Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme43aN Structured version   Visualization version   GIF version

Theorem cdleme43aN 34594
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT p. 115 penultimate line: g(f(r)) = (p v q) ^ (g(s) v v1). (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme43.b 𝐵 = (Base‘𝐾)
cdleme43.l = (le‘𝐾)
cdleme43.j = (join‘𝐾)
cdleme43.m = (meet‘𝐾)
cdleme43.a 𝐴 = (Atoms‘𝐾)
cdleme43.h 𝐻 = (LHyp‘𝐾)
cdleme43.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme43.x 𝑋 = ((𝑄 𝑃) 𝑊)
cdleme43.c 𝐶 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme43.f 𝑍 = ((𝑃 𝑄) (𝐶 ((𝑅 𝑆) 𝑊)))
cdleme43.d 𝐷 = ((𝑆 𝑋) (𝑃 ((𝑄 𝑆) 𝑊)))
cdleme43.g 𝐺 = ((𝑄 𝑃) (𝐷 ((𝑍 𝑆) 𝑊)))
cdleme43.e 𝐸 = ((𝐷 𝑈) (𝑄 ((𝑃 𝐷) 𝑊)))
cdleme43.v 𝑉 = ((𝑍 𝑆) 𝑊)
cdleme43.y 𝑌 = ((𝑅 𝐷) 𝑊)
Assertion
Ref Expression
cdleme43aN ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐺 = ((𝑃 𝑄) (𝐷 𝑉)))

Proof of Theorem cdleme43aN
StepHypRef Expression
1 cdleme43.j . . . 4 = (join‘𝐾)
2 cdleme43.a . . . 4 𝐴 = (Atoms‘𝐾)
31, 2hlatjcom 33471 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) = (𝑄 𝑃))
4 cdleme43.v . . . . 5 𝑉 = ((𝑍 𝑆) 𝑊)
54oveq2i 6534 . . . 4 (𝐷 𝑉) = (𝐷 ((𝑍 𝑆) 𝑊))
65a1i 11 . . 3 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝐷 𝑉) = (𝐷 ((𝑍 𝑆) 𝑊)))
73, 6oveq12d 6541 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) (𝐷 𝑉)) = ((𝑄 𝑃) (𝐷 ((𝑍 𝑆) 𝑊))))
8 cdleme43.g . 2 𝐺 = ((𝑄 𝑃) (𝐷 ((𝑍 𝑆) 𝑊)))
97, 8syl6reqr 2658 1 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝐺 = ((𝑃 𝑄) (𝐷 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1030   = wceq 1474  wcel 1975  cfv 5786  (class class class)co 6523  Basecbs 15637  lecple 15717  joincjn 16709  meetcmee 16710  Atomscatm 33367  HLchlt 33454  LHypclh 34087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-lub 16739  df-join 16741  df-lat 16811  df-ats 33371  df-atl 33402  df-cvlat 33426  df-hlat 33455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator