HomeHome Metamath Proof Explorer
Theorem List (p. 377 of 425)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26947)
  Hilbert Space Explorer  Hilbert Space Explorer
(26948-28472)
  Users' Mathboxes  Users' Mathboxes
(28473-42426)
 

Theorem List for Metamath Proof Explorer - 37601-37700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
20.30  Mathbox for Alan Sare

We are sad to report the passing of long-time contributor Alan Sare (Nov. 9, 1954 - Mar. 23, 2019).

Alan's first contribution to Metamath was a shorter proof for tfrlem8 7243 in 2008.

He developed a tool called "completeusersproof" that assists developing proofs using his "virtual deduction" method: http://us.metamath.org/other.html#completeusersproof. His virtual deduction method is explained in the comment for wvd1 37703.

Below are some excerpts from his first emails to NM in 2007:

...I have been interested in proving set theory theorems for many years for mental exercise. I enjoy it. I have used a book by Martin Zuckerman. It is informal. I am interested in completely and perfectly proving theorems. Mr. Zuckerman leaves out most of the steps of a proof, of course, like most authors do, as you have noted. A complete proof for higher theorems would require a volume of writing similar to the metamath documents. So I am frustrated when I am not capable of constructing a proof and Zuckerman leaves out steps I do not understand. I could search for the steps in other texts, but I don't do that too much. Metamath may be the answer for me....

...If we go beyond mathematics, I believe that it is possible to write down all human knowledge in a way similar to the way you have explicated large areas of mathematics. Of course, that would be a much, much more difficult job. For example, it is possible to take a hard science like physics construct axioms based on experimental results and to cast all of physics into a collection of axioms and theorems. Maybe his has already been attempted, although I am not familiar with it. When one then moves on to the soft sciences such as social science, this job gets much more difficult. The key is: All human thought consists of logical operations on abstract objects. Usually, these logical operations are done informally. There is no reason why one cannot take any subject and explicate it and take it down to the indivisible postulates in a formal rigorous way....

...When I read a math book or an engineering book I come across something I don't understand and I am compelled to understand it. But, often it is hopeless. I don't have the time. Or, I would have to read the same thing by multiple authors in the hope that different authors would give parts of the working proof that others have omitted. It is very inefficient. Because I have always been inclined to "get to the bottom" for a 100% fully understood proof....

 
20.30.1  Auxiliary theorems for the Virtual Deduction tool
 
TheoremidiALT 37601 Placeholder for idi 2. Though unnecessary, this theorem is sometimes used in proofs in this mathbox for pedagogical purposes. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       𝜑
 
Theoremexbir 37602 Exportation implication also converting the consequent from a biconditional to an implication. Derived automatically from exbirVD 38007. (Contributed by Alan Sare, 31-Dec-2011.)
(((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜃𝜒))))
 
Theorem3impexpbicom 37603 Version of 3impexp 1280 where in addition the consequent is commuted. (Contributed by Alan Sare, 31-Dec-2011.)
(((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))
 
Theorem3impexpbicomi 37604 Inference associated with 3impexpbicom 37603. Derived automatically from 3impexpbicomiVD 38012. (Contributed by Alan Sare, 31-Dec-2011.)
((𝜑𝜓𝜒) → (𝜃𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))
 
20.30.2  Supplementary unification deductions
 
Theorembi1imp 37605 Importation inference similar to imp 443, except the outermost implication of the hypothesis is a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 ↔ (𝜓𝜒))       ((𝜑𝜓) → 𝜒)
 
Theorembi2imp 37606 Importation inference similar to imp 443, except both implications of the hypothesis are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 ↔ (𝜓𝜒))       ((𝜑𝜓) → 𝜒)
 
Theorembi3impb 37607 Similar to 3impb 1251 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
((𝜑 ∧ (𝜓𝜒)) ↔ 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi3impa 37608 Similar to 3impa 1250 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(((𝜑𝜓) ∧ 𝜒) ↔ 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi23impib 37609 3impib 1253 with the inner implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 → ((𝜓𝜒) ↔ 𝜃))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi13impib 37610 3impib 1253 with the outer implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 ↔ ((𝜓𝜒) → 𝜃))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi123impib 37611 3impib 1253 with the implications of the hypothesis biconditionals. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 ↔ ((𝜓𝜒) ↔ 𝜃))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi13impia 37612 3impia 1252 with the outer implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
((𝜑𝜓) ↔ (𝜒𝜃))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi123impia 37613 3impia 1252 with the implications of the hypothesis biconditionals. (Contributed by Alan Sare, 6-Nov-2017.)
((𝜑𝜓) ↔ (𝜒𝜃))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi33imp12 37614 3imp 1248 with innermost implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 → (𝜓 → (𝜒𝜃)))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi23imp13 37615 3imp 1248 with middle implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 → (𝜓 ↔ (𝜒𝜃)))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi13imp23 37616 3imp 1248 with outermost implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 ↔ (𝜓 → (𝜒𝜃)))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi13imp2 37617 Similar to 3imp 1248 except the outermost and innermost implications are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 ↔ (𝜓 → (𝜒𝜃)))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi12imp3 37618 Similar to 3imp 1248 except all but innermost implication are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 ↔ (𝜓 ↔ (𝜒𝜃)))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi23imp1 37619 Similar to 3imp 1248 except all but outermost implication are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 → (𝜓 ↔ (𝜒𝜃)))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi123imp0 37620 Similar to 3imp 1248 except all implications are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 ↔ (𝜓 ↔ (𝜒𝜃)))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorem4animp1 37621 A single hypothesis unification deduction with an assertion which is an implication with a 4-right-nested conjunction antecedent. (Contributed by Alan Sare, 30-May-2018.)
((𝜑𝜓𝜒) → (𝜏𝜃))       ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
 
Theorem4an31 37622 A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018.)
((((𝜒𝜓) ∧ 𝜑) ∧ 𝜃) → 𝜏)       ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
 
Theorem4an4132 37623 A rearrangement of conjuncts for a 4-right-nested conjunction. (Contributed by Alan Sare, 30-May-2018.)
((((𝜃𝜒) ∧ 𝜓) ∧ 𝜑) → 𝜏)       ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)
 
Theoremexpcomdg 37624 Biconditional form of expcomd 452. (Contributed by Alan Sare, 22-Jul-2012.) (New usage is discouraged.)
((𝜑 → ((𝜓𝜒) → 𝜃)) ↔ (𝜑 → (𝜒 → (𝜓𝜃))))
 
20.30.3  Conventional Metamath proofs, some derived from VD proofs
 
Theoremiidn3 37625 idn3 37758 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜒)))
 
Theoremee222 37626 e222 37779 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 7-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓𝜃))    &   (𝜑 → (𝜓𝜏))    &   (𝜒 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜓𝜂))
 
Theoremee3bir 37627 Right-biconditional form of e3 37882 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 22-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜃)))    &   (𝜏𝜃)       (𝜑 → (𝜓 → (𝜒𝜏)))
 
Theoremee13 37628 e13 37893 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 28-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   (𝜑 → (𝜒 → (𝜃𝜏)))    &   (𝜓 → (𝜏𝜂))       (𝜑 → (𝜒 → (𝜃𝜂)))
 
Theoremee121 37629 e121 37799 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   (𝜑 → (𝜒𝜃))    &   (𝜑𝜏)    &   (𝜓 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜒𝜂))
 
Theoremee122 37630 e122 37796 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝜓)    &   (𝜑 → (𝜒𝜃))    &   (𝜑 → (𝜒𝜏))    &   (𝜓 → (𝜃 → (𝜏𝜂)))       (𝜑 → (𝜒𝜂))
 
Theoremee333 37631 e333 37878 without virtual deductions. (Contributed by Alan Sare, 17-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜃)))    &   (𝜑 → (𝜓 → (𝜒𝜏)))    &   (𝜑 → (𝜓 → (𝜒𝜂)))    &   (𝜃 → (𝜏 → (𝜂𝜁)))       (𝜑 → (𝜓 → (𝜒𝜁)))
 
Theoremee323 37632 e323 37911 without virtual deductions. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜃)))    &   (𝜑 → (𝜓𝜏))    &   (𝜑 → (𝜓 → (𝜒𝜂)))    &   (𝜃 → (𝜏 → (𝜂𝜁)))       (𝜑 → (𝜓 → (𝜒𝜁)))
 
Theorem3ornot23 37633 If the second and third disjuncts of a true triple disjunction are false, then the first disjunct is true. Automatically derived from 3ornot23VD 38001. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒𝜑𝜓) → 𝜒))
 
Theoremorbi1r 37634 orbi1 737 with order of disjuncts reversed. Derived from orbi1rVD 38002. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))
 
Theorem3orbi123 37635 pm4.39 910 with a 3-conjunct antecedent. This proof is 3orbi123VD 38004 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂)))
 
Theoremsyl5imp 37636 Closed form of syl5 33. Derived automatically from syl5impVD 38018. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓𝜒)) → ((𝜃𝜓) → (𝜑 → (𝜃𝜒))))
 
Theoremimpexpd 37637 The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. After the User's Proof was completed, it was minimized. The completed User's Proof before minimization is not shown. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (((𝜓𝜒) → 𝜃) ↔ (𝜓 → (𝜒 𝜃)))
qed:1: ((𝜑 → ((𝜓𝜒) → 𝜃)) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
((𝜑 → ((𝜓𝜒) → 𝜃)) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
 
Theoremcom3rgbi 37638 The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜑 → (𝜒 → (𝜓𝜃))))
2:: ((𝜑 → (𝜒 → (𝜓𝜃))) → (𝜒 → (𝜑 → (𝜓𝜃))))
3:1,2: ((𝜑 → (𝜓 → (𝜒𝜃))) → (𝜒 → (𝜑 → (𝜓𝜃))))
4:: ((𝜒 → (𝜑 → (𝜓𝜃))) → (𝜑 → (𝜒 → (𝜓𝜃))))
5:: ((𝜑 → (𝜒 → (𝜓𝜃))) → (𝜑 → (𝜓 → (𝜒𝜃))))
6:4,5: ((𝜒 → (𝜑 → (𝜓𝜃))) → (𝜑 → (𝜓 → (𝜒𝜃))))
qed:3,6: ((𝜑 → (𝜓 → (𝜒𝜃))) ↔ (𝜒 → (𝜑 → (𝜓𝜃))))
((𝜑 → (𝜓 → (𝜒𝜃))) ↔ (𝜒 → (𝜑 → (𝜓𝜃))))
 
Theoremimpexpdcom 37639 The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: ((𝜑 → ((𝜓𝜒) → 𝜃)) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
2:: ((𝜓 → (𝜒 → (𝜑𝜃))) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
qed:1,2: ((𝜑 → ((𝜓𝜒) → 𝜃)) ↔ (𝜓 → (𝜒 → (𝜑𝜃))))
((𝜑 → ((𝜓𝜒) → 𝜃)) ↔ (𝜓 → (𝜒 → (𝜑𝜃))))
 
Theoremee1111 37640 Non-virtual deduction form of e1111 37818. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown.
h1:: (𝜑𝜓)
h2:: (𝜑𝜒)
h3:: (𝜑𝜃)
h4:: (𝜑𝜏)
h5:: (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂))))
6:1,5: (𝜑 → (𝜒 → (𝜃 → (𝜏𝜂))))
7:6: (𝜒 → (𝜑 → (𝜃 → (𝜏𝜂))))
8:2,7: (𝜑 → (𝜑 → (𝜃 → (𝜏𝜂))))
9:8: (𝜑 → (𝜃 → (𝜏𝜂)))
10:9: (𝜃 → (𝜑 → (𝜏𝜂)))
11:3,10: (𝜑 → (𝜑 → (𝜏𝜂)))
12:11: (𝜑 → (𝜏𝜂))
13:12: (𝜏 → (𝜑𝜂))
14:4,13: (𝜑 → (𝜑𝜂))
qed:14: (𝜑𝜂)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜑𝜃)    &   (𝜑𝜏)    &   (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂))))       (𝜑𝜂)
 
Theorempm2.43bgbi 37641 Logical equivalence of a 2-left-nested implication and a 1-left-nested implicated when two antecedents of the former implication are identical. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown.
1:: ((𝜑 → (𝜓 → (𝜑𝜒))) → (𝜑 → (𝜑 → (𝜓𝜒))))
2:: ((𝜑 → (𝜑 → (𝜓𝜒))) → (𝜑 → (𝜓𝜒)))
3:1,2: ((𝜑 → (𝜓 → (𝜑𝜒))) → (𝜑 → (𝜓𝜒)))
4:: ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
5:3,4: ((𝜑 → (𝜓 → (𝜑𝜒))) → (𝜓 → (𝜑𝜒)))
6:: ((𝜓 → (𝜑𝜒)) → (𝜑 → (𝜓 → (𝜑𝜒))))
qed:5,6: ((𝜑 → (𝜓 → (𝜑𝜒))) ↔ (𝜓 → (𝜑𝜒)))
((𝜑 → (𝜓 → (𝜑𝜒))) ↔ (𝜓 → (𝜑𝜒)))
 
Theorempm2.43cbi 37642 Logical equivalence of a 3-left-nested implication and a 2-left-nested implicated when two antecedents of the former implication are identical. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown.
1:: ((𝜑 → (𝜓 → (𝜒 → (𝜑𝜃))) ) → (𝜑 → (𝜓 → (𝜑 → (𝜒𝜃)))))
2:: ((𝜑 → (𝜓 → (𝜑 → (𝜒𝜃))) ) → (𝜓 → (𝜑 → (𝜒𝜃))))
3:1,2: ((𝜑 → (𝜓 → (𝜒 → (𝜑𝜃))) ) → (𝜓 → (𝜑 → (𝜒𝜃))))
4:: ((𝜓 → (𝜑 → (𝜒𝜃))) → (𝜓 → (𝜒 → (𝜑𝜃))))
5:3,4: ((𝜑 → (𝜓 → (𝜒 → (𝜑𝜃))) ) → (𝜓 → (𝜒 → (𝜑𝜃))))
6:: ((𝜓 → (𝜒 → (𝜑𝜃))) → (𝜑 → (𝜓 → (𝜒 → (𝜑𝜃)))))
qed:5,6: ((𝜑 → (𝜓 → (𝜒 → (𝜑𝜃))) ) ↔ (𝜓 → (𝜒 → (𝜑𝜃))))
((𝜑 → (𝜓 → (𝜒 → (𝜑𝜃)))) ↔ (𝜓 → (𝜒 → (𝜑𝜃))))
 
Theoremee233 37643 Non-virtual deduction form of e233 37910. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown.
h1:: (𝜑 → (𝜓𝜒))
h2:: (𝜑 → (𝜓 → (𝜃𝜏)))
h3:: (𝜑 → (𝜓 → (𝜃𝜂)))
h4:: (𝜒 → (𝜏 → (𝜂𝜁)))
5:1,4: (𝜑 → (𝜓 → (𝜏 → (𝜂𝜁))) )
6:5: (𝜏 → (𝜑 → (𝜓 → (𝜂𝜁))) )
7:2,6: (𝜑 → (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂𝜁))))))
8:7: (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜂 𝜁)))))
9:8: (𝜃 → (𝜑 → (𝜓 → (𝜂𝜁))) )
10:9: (𝜑 → (𝜓 → (𝜃 → (𝜂𝜁))) )
11:10: (𝜂 → (𝜑 → (𝜓 → (𝜃𝜁))) )
12:3,11: (𝜑 → (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃𝜁))))))
13:12: (𝜓 → (𝜃 → (𝜑 → (𝜓 → (𝜃 𝜁)))))
14:13: (𝜃 → (𝜑 → (𝜓 → (𝜃𝜁))) )
qed:14: (𝜑 → (𝜓 → (𝜃𝜁)))
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓 → (𝜃𝜏)))    &   (𝜑 → (𝜓 → (𝜃𝜂)))    &   (𝜒 → (𝜏 → (𝜂𝜁)))       (𝜑 → (𝜓 → (𝜃𝜁)))
 
Theoremimbi13 37644 Join three logical equivalences to form equivalence of implications. imbi13 37644 is imbi13VD 38029 without virtual deductions and was automatically derived from imbi13VD 38029 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))))
 
Theoremee33 37645 Non-virtual deduction form of e33 37879. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. The completed Virtual Deduction Proof (not shown) was minimized. The minimized proof is shown.
h1:: (𝜑 → (𝜓 → (𝜒𝜃)))
h2:: (𝜑 → (𝜓 → (𝜒𝜏)))
h3:: (𝜃 → (𝜏𝜂))
4:1,3: (𝜑 → (𝜓 → (𝜒 → (𝜏𝜂))))
5:4: (𝜏 → (𝜑 → (𝜓 → (𝜒𝜂))))
6:2,5: (𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓 (𝜒𝜂))))))
7:6: (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒 𝜂)))))
8:7: (𝜒 → (𝜑 → (𝜓 → (𝜒𝜂))))
qed:8: (𝜑 → (𝜓 → (𝜒𝜂)))
(𝜑 → (𝜓 → (𝜒𝜃)))    &   (𝜑 → (𝜓 → (𝜒𝜏)))    &   (𝜃 → (𝜏𝜂))       (𝜑 → (𝜓 → (𝜒𝜂)))
 
Theoremcon5 37646 Biconditional contraposition variation. This proof is con5VD 38055 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))
 
Theoremcon5i 37647 Inference form of con5 37646. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 ↔ ¬ 𝜓)       𝜑𝜓)
 
Theoremexlimexi 37648 Inference similar to Theorem 19.23 of [Margaris] p. 90. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜓 → ∀𝑥𝜓)    &   (∃𝑥𝜑 → (𝜑𝜓))       (∃𝑥𝜑𝜓)
 
Theoremsb5ALT 37649* Equivalence for substitution. Alternate proof of sb5 2322. This proof is sb5ALTVD 38068 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremeexinst01 37650 exinst01 37768 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥𝜓    &   (𝜑 → (𝜓𝜒))    &   (𝜑 → ∀𝑥𝜑)    &   (𝜒 → ∀𝑥𝜒)       (𝜑𝜒)
 
Theoremeexinst11 37651 exinst11 37769 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → ∃𝑥𝜓)    &   (𝜑 → (𝜓𝜒))    &   (𝜑 → ∀𝑥𝜑)    &   (𝜒 → ∀𝑥𝜒)       (𝜑𝜒)
 
Theoremvk15.4j 37652 Excercise 4j of Unit 15 of "Understanding Symbolic Logic", Fifth Edition (2008), by Virginia Klenk. This proof is the minimized Hilbert-style axiomatic version of the Fitch-style Natural Deduction proof found on page 442 of Klenk and was automatically derived from that proof. vk15.4j 37652 is vk15.4jVD 38069 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ (∃𝑥 ¬ 𝜑 ∧ ∃𝑥(𝜓 ∧ ¬ 𝜒))    &   (∀𝑥𝜒 → ¬ ∃𝑥(𝜃𝜏))    &    ¬ ∀𝑥(𝜏𝜑)       (¬ ∃𝑥 ¬ 𝜃 → ¬ ∀𝑥𝜓)
 
TheoremnotnotrALT 37653 Converse of double negation. Alternate proof of notnotr 123. This proof is notnotrALTVD 38070 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ¬ 𝜑𝜑)
 
Theoremcon3ALT2 37654 Contraposition. Alternate proof of con3 147. This proof is con3ALTVD 38071 automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
 
Theoremssralv2 37655* Quantification restricted to a subclass for two quantifiers. ssralv 3533 for two quantifiers. The proof of ssralv2 37655 was automatically generated by minimizing the automatically translated proof of ssralv2VD 38021. The automatic translation is by the tools program translatewithout_overwriting.cmd. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))
 
Theoremsbc3or 37656 sbcor 3350 with a 3-disjuncts. This proof is sbc3orgVD 38005 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Revised by NM, 24-Aug-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
 
TheoremsbcangOLD 37657 Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.) Obsolete as of 17-Aug-2018. Use sbcan 3349 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 
TheoremsbcorgOLD 37658 Distribution of class substitution over disjunction. (Contributed by NM, 21-May-2004.) Obsolete as of 17-Aug-2018. Use sbcor 3350 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 
TheoremsbcbiiOLD 37659 Formula-building inference rule for class substitution. (Contributed by NM, 11-Nov-2005.) Obsolete as of 17-Aug-2018. Use sbcbii 3362 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝜑𝜓)       (𝐴𝑉 → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓))
 
Theoremsbc3orgOLD 37660 sbcorgOLD 37658 with a 3-disjuncts. This proof is sbc3orgVD 38005 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
 
Theoremalrim3con13v 37661* Closed form of alrimi 2008 with 2 additional conjuncts having no occurrences of the quantifying variable. This proof is 19.21a3con13vVD 38006 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → ∀𝑥𝜑) → ((𝜓𝜑𝜒) → ∀𝑥(𝜓𝜑𝜒)))
 
Theoremrspsbc2 37662* rspsbc 3388 with two quantifying variables. This proof is rspsbc2VD 38009 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
 
Theoremsbcoreleleq 37663* Substitution of a setvar variable for another setvar variable in a 3-conjunct formula. Derived automatically from sbcoreleleqVD 38014. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))
 
Theoremtratrb 37664* If a class is transitive and any two distinct elements of the class are E-comparable, then every element of that class is transitive. Derived automatically from tratrbVD 38016. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)
 
TheoremordelordALT 37665 An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 5552 using the Axiom of Regularity indirectly through dford2 8276. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that E Fr 𝐴 because this is inferred by the Axiom of Regularity. ordelordALT 37665 is ordelordALTVD 38022 without virtual deductions and was automatically derived from ordelordALTVD 38022 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((Ord 𝐴𝐵𝐴) → Ord 𝐵)
 
Theoremsbcim2g 37666 Distribution of class substitution over a left-nested implication. Similar to sbcimg 3348. sbcim2g 37666 is sbcim2gVD 38030 without virtual deductions and was automatically derived from sbcim2gVD 38030 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))
 
Theoremsbcbi 37667 Implication form of sbcbiiOLD 37659. sbcbi 37667 is sbcbiVD 38031 without virtual deductions and was automatically derived from sbcbiVD 38031 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))
 
Theoremtrsbc 37668* Formula-building inference rule for class substitution, substituting a class variable for the setvar variable of the transitivity predicate. trsbc 37668 is trsbcVD 38032 without virtual deductions and was automatically derived from trsbcVD 38032 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
 
TheoremtruniALT 37669* The union of a class of transitive sets is transitive. Alternate proof of truni 4593. truniALT 37669 is truniALTVD 38033 without virtual deductions and was automatically derived from truniALTVD 38033 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
 
TheoremsbcalgOLD 37670* Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.) Obsolete as of 17-Aug-2018. Use sbcal 3356 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∀𝑥[𝐴 / 𝑦]𝜑))
 
TheoremsbcexgOLD 37671* Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) Obsolete as of 17-Aug-2018. Use sbcex 3316 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑦]𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑))
 
Theoremsbcel12gOLD 37672 Distribute proper substitution through a membership relation. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 18-Aug-2018. Use sbcel12 3838 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
 
Theoremsbcel2gOLD 37673* Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.) Obsolete as of 18-Aug-2018. Use sbcel2 3844 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐵𝐴 / 𝑥𝐶))
 
TheoremsbcssOLD 37674 Distribute proper substitution through a subclass relation. This theorem was automatically derived from sbcssgVD 38038. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
 
TheoremonfrALTlem5 37675* Lemma for onfrALT 37682. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
 
TheoremonfrALTlem4 37676* Lemma for onfrALT 37682. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
 
TheoremonfrALTlem3 37677* Lemma for onfrALT 37682. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
 
Theoremggen31 37678* gen31 37764 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → (𝜓 → (𝜒 → ∀𝑥𝜃)))
 
TheoremonfrALTlem2 37679* Lemma for onfrALT 37682. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
 
Theoremcbvexsv 37680* A theorem pertaining to the substitution for an existentially quantified variable when the substituted variable does not occur in the quantified wff. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
 
TheoremonfrALTlem1 37681* Lemma for onfrALT 37682. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
 
TheoremonfrALT 37682 The epsilon relation is foundational on the class of ordinal numbers. onfrALT 37682 is an alternate proof of onfr 5569. onfrALTVD 38046 is the Virtual Deduction proof from which onfrALT 37682 is derived. The Virtual Deduction proof mirrors the working proof of onfr 5569 which is the main part of the proof of Theorem 7.12 of the first edition of TakeutiZaring. The proof of the corresponding Proposition 7.12 of [TakeutiZaring] p. 38 (second edition) does not contain the working proof equivalent of onfrALTVD 38046. This theorem does not rely on the Axiom of Regularity. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
E Fr On
 
Theoremcsbeq2gOLD 37683 Formula-building implication rule for class substitution. Closed form of csbeq2i 3848. csbeq2gOLD 37683 is derived from the virtual deduction proof csbeq2gVD 38047. (Contributed by Alan Sare, 10-Nov-2012.) Obsolete version of csbeq2 3407 as of 11-Oct-2018. (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
 
Theorem19.41rg 37684 Closed form of right-to-left implication of 19.41 2101, Theorem 19.41 of [Margaris] p. 90. Derived from 19.41rgVD 38057. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))
 
Theoremopelopab4 37685* Ordered pair membership in a class abstraction of pairs. Compare to elopab 4802. (Contributed by Alan Sare, 8-Feb-2014.) (Revised by Mario Carneiro, 6-May-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(⟨𝑢, 𝑣⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
 
Theorem2pm13.193 37686 pm13.193 37531 for two variables. pm13.193 37531 is Theorem *13.193 in [WhiteheadRussell] p. 179. Derived from 2pm13.193VD 38058. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))
 
Theoremhbntal 37687 A closed form of hbn 2025. hbnt 2024 is another closed form of hbn 2025. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
 
Theoremhbimpg 37688 A closed form of hbim 2053. Derived from hbimpgVD 38059. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓)))
 
Theoremhbalg 37689 Closed form of hbal 1973. Derived from hbalgVD 38060. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))
 
Theoremhbexg 37690 Closed form of nfex 2080. Derived from hbexgVD 38061. (Contributed by Alan Sare, 8-Feb-2014.) (Revised by Mario Carneiro, 12-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))
 
Theoremax6e2eq 37691* Alternate form of ax6e 2141 for non-distinct 𝑥, 𝑦 and 𝑢 = 𝑣. ax6e2eq 37691 is derived from ax6e2eqVD 38062. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))
 
Theoremax6e2nd 37692* If at least two sets exist (dtru 4682) , then the same is true expressed in an alternate form similar to the form of ax6e 2141. ax6e2nd 37692 is derived from ax6e2ndVD 38063. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theoremax6e2ndeq 37693* "At least two sets exist" expressed in the form of dtru 4682 is logically equivalent to the same expressed in a form similar to ax6e 2141 if dtru 4682 is false implies 𝑢 = 𝑣. ax6e2ndeq 37693 is derived from ax6e2ndeqVD 38064. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) ↔ ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))
 
Theorem2sb5nd 37694* Equivalence for double substitution 2sb5 2335 without distinct 𝑥, 𝑦 requirement. 2sb5nd 37694 is derived from 2sb5ndVD 38065. (Contributed by Alan Sare, 30-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ ∀𝑥 𝑥 = 𝑦𝑢 = 𝑣) → ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑)))
 
Theorem2uasbanh 37695* Distribute the unabbreviated form of proper substitution in and out of a conjunction. 2uasbanh 37695 is derived from 2uasbanhVD 38066. (Contributed by Alan Sare, 31-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜒 ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))       (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
 
Theorem2uasban 37696* Distribute the unabbreviated form of proper substitution in and out of a conjunction. (Contributed by Alan Sare, 31-May-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ (𝜑𝜓)) ↔ (∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑) ∧ ∃𝑥𝑦((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜓)))
 
Theoreme2ebind 37697 Absorption of an existential quantifier of a double existential quantifier of non-distinct variables. e2ebind 37697 is derived from e2ebindVD 38067. (Contributed by Alan Sare, 27-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → (∃𝑥𝑦𝜑 ↔ ∃𝑦𝜑))
 
Theoremelpwgded 37698 elpwgdedVD 38072 in conventional notation. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝐴 ∈ V)    &   (𝜓𝐴𝐵)       ((𝜑𝜓) → 𝐴 ∈ 𝒫 𝐵)
 
Theoremtrelded 37699 Deduction form of trel 4585. In a transitive class, the membership relation is transitive. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → Tr 𝐴)    &   (𝜓𝐵𝐶)    &   (𝜒𝐶𝐴)       ((𝜑𝜓𝜒) → 𝐵𝐴)
 
Theoremjaoded 37700 Deduction form of jao 532. Disjunction of antecedents. (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓𝜒))    &   (𝜃 → (𝜏𝜒))    &   (𝜂 → (𝜓𝜏))       ((𝜑𝜃𝜂) → 𝜒)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
  Copyright terms: Public domain < Previous  Next >