Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1independent Structured version   Visualization version   GIF version

Theorem clsk1independent 37861
Description: For generalized closure functions, property K1 (isotony) is independent of the properties K0, K2, K3, K4. This contradicts a claim which appears in preprints of Table 2 in Bärbel M. R. Stadler and Peter F. Stadler. "Generalized Topological Spaces in Evolutionary Theory and Combinatorial Chemistry." J. Chem. Inf. Comput. Sci., 42:577-585, 2002. Proceedings MCC 2001, Dubrovnik. The same table row implying K1 follows from the other four appears in the supplemental materials Bärbel M. R. Stadler and Peter F. Stadler. "Basic Properties of Closure Spaces" 2001 on page 12. (Contributed by RP, 5-Jul-2021.)
Hypotheses
Ref Expression
clsnim.k0 (𝜑 ↔ (𝑘‘∅) = ∅)
clsnim.k1 (𝜓 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
clsnim.k2 (𝜒 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠))
clsnim.k3 (𝜃 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)))
clsnim.k4 (𝜏 ↔ ∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠))
Assertion
Ref Expression
clsk1independent ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓)
Distinct variable group:   𝑘,𝑏,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑘,𝑠,𝑏)   𝜓(𝑡,𝑘,𝑠,𝑏)   𝜒(𝑡,𝑘,𝑠,𝑏)   𝜃(𝑡,𝑘,𝑠,𝑏)   𝜏(𝑡,𝑘,𝑠,𝑏)

Proof of Theorem clsk1independent
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 3on 7522 . . 3 3𝑜 ∈ On
21elexi 3202 . 2 3𝑜 ∈ V
3 eqid 2621 . . . . 5 (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
4 notnotr 125 . . . . . . . . . . 11 (¬ ¬ 𝑟 = {∅} → 𝑟 = {∅})
54a1i 11 . . . . . . . . . 10 (𝑟 ∈ 𝒫 3𝑜 → (¬ ¬ 𝑟 = {∅} → 𝑟 = {∅}))
6 sssucid 5766 . . . . . . . . . . . . 13 2𝑜 ⊆ suc 2𝑜
7 2on 7520 . . . . . . . . . . . . . . 15 2𝑜 ∈ On
87elexi 3202 . . . . . . . . . . . . . 14 2𝑜 ∈ V
98elpw 4141 . . . . . . . . . . . . 13 (2𝑜 ∈ 𝒫 suc 2𝑜 ↔ 2𝑜 ⊆ suc 2𝑜)
106, 9mpbir 221 . . . . . . . . . . . 12 2𝑜 ∈ 𝒫 suc 2𝑜
11 df2o3 7525 . . . . . . . . . . . 12 2𝑜 = {∅, 1𝑜}
12 df-3o 7514 . . . . . . . . . . . . . 14 3𝑜 = suc 2𝑜
1312eqcomi 2630 . . . . . . . . . . . . 13 suc 2𝑜 = 3𝑜
1413pweqi 4139 . . . . . . . . . . . 12 𝒫 suc 2𝑜 = 𝒫 3𝑜
1510, 11, 143eltr3i 2710 . . . . . . . . . . 11 {∅, 1𝑜} ∈ 𝒫 3𝑜
16152a1i 12 . . . . . . . . . 10 (𝑟 ∈ 𝒫 3𝑜 → (¬ ¬ 𝑟 = {∅} → {∅, 1𝑜} ∈ 𝒫 3𝑜))
175, 16jcad 555 . . . . . . . . 9 (𝑟 ∈ 𝒫 3𝑜 → (¬ ¬ 𝑟 = {∅} → (𝑟 = {∅} ∧ {∅, 1𝑜} ∈ 𝒫 3𝑜)))
1817con1d 139 . . . . . . . 8 (𝑟 ∈ 𝒫 3𝑜 → (¬ (𝑟 = {∅} ∧ {∅, 1𝑜} ∈ 𝒫 3𝑜) → ¬ 𝑟 = {∅}))
1918anc2ri 580 . . . . . . 7 (𝑟 ∈ 𝒫 3𝑜 → (¬ (𝑟 = {∅} ∧ {∅, 1𝑜} ∈ 𝒫 3𝑜) → (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3𝑜)))
2019orrd 393 . . . . . 6 (𝑟 ∈ 𝒫 3𝑜 → ((𝑟 = {∅} ∧ {∅, 1𝑜} ∈ 𝒫 3𝑜) ∨ (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3𝑜)))
21 ifel 4106 . . . . . 6 (if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) ∈ 𝒫 3𝑜 ↔ ((𝑟 = {∅} ∧ {∅, 1𝑜} ∈ 𝒫 3𝑜) ∨ (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3𝑜)))
2220, 21sylibr 224 . . . . 5 (𝑟 ∈ 𝒫 3𝑜 → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) ∈ 𝒫 3𝑜)
233, 22fmpti 6344 . . . 4 (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)):𝒫 3𝑜⟶𝒫 3𝑜
242pwex 4813 . . . . 5 𝒫 3𝑜 ∈ V
2524, 24elmap 7838 . . . 4 ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) ∈ (𝒫 3𝑜𝑚 𝒫 3𝑜) ↔ (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)):𝒫 3𝑜⟶𝒫 3𝑜)
2623, 25mpbir 221 . . 3 (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) ∈ (𝒫 3𝑜𝑚 𝒫 3𝑜)
273clsk1indlem0 37856 . . . . . 6 ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘∅) = ∅
283clsk1indlem2 37857 . . . . . 6 𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)
2927, 28pm3.2i 471 . . . . 5 (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠))
303clsk1indlem3 37858 . . . . . 6 𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡))
313clsk1indlem4 37859 . . . . . 6 𝑠 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)
3230, 31pm3.2i 471 . . . . 5 (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠))
3329, 32pm3.2i 471 . . . 4 ((((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)))
343clsk1indlem1 37860 . . . 4 𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡))
3533, 34pm3.2i 471 . . 3 (((((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)))
36 fveq1 6152 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (𝑘‘∅) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘∅))
3736eqeq1d 2623 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → ((𝑘‘∅) = ∅ ↔ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘∅) = ∅))
38 fveq1 6152 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (𝑘𝑠) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠))
3938sseq2d 3617 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (𝑠 ⊆ (𝑘𝑠) ↔ 𝑠 ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)))
4039ralbidv 2981 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)))
4137, 40anbi12d 746 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)) ↔ (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠))))
42 fveq1 6152 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (𝑘‘(𝑠𝑡)) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘(𝑠𝑡)))
43 fveq1 6152 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (𝑘𝑡) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡))
4438, 43uneq12d 3751 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → ((𝑘𝑠) ∪ (𝑘𝑡)) = (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)))
4542, 44sseq12d 3618 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → ((𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡))))
46452ralbidv 2984 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡))))
47 id 22 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → 𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)))
4847, 38fveq12d 6159 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (𝑘‘(𝑘𝑠)) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)))
4948, 38eqeq12d 2636 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → ((𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)))
5049ralbidv 2981 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)))
5146, 50anbi12d 746 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → ((∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠)) ↔ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠))))
5241, 51anbi12d 746 . . . . 5 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ↔ ((((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)))))
53 rexnal2 3037 . . . . . 6 (∃𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜 ¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ¬ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
54 pm4.61 442 . . . . . . . 8 (¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ (𝑘𝑠) ⊆ (𝑘𝑡)))
5538, 43sseq12d 3618 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → ((𝑘𝑠) ⊆ (𝑘𝑡) ↔ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)))
5655notbid 308 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (¬ (𝑘𝑠) ⊆ (𝑘𝑡) ↔ ¬ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)))
5756anbi2d 739 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → ((𝑠𝑡 ∧ ¬ (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡))))
5854, 57syl5bb 272 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡))))
59582rexbidv 3051 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (∃𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜 ¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∃𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡))))
6053, 59syl5bbr 274 . . . . 5 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (¬ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∃𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡))))
6152, 60anbi12d 746 . . . 4 (𝑘 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) → (((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))) ↔ (((((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)))))
6261rspcev 3298 . . 3 (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) ∈ (𝒫 3𝑜𝑚 𝒫 3𝑜) ∧ (((((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))‘𝑡)))) → ∃𝑘 ∈ (𝒫 3𝑜𝑚 𝒫 3𝑜)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
6326, 35, 62mp2an 707 . 2 𝑘 ∈ (𝒫 3𝑜𝑚 𝒫 3𝑜)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
64 pweq 4138 . . . . . 6 (𝑏 = 3𝑜 → 𝒫 𝑏 = 𝒫 3𝑜)
6564, 64oveq12d 6628 . . . . 5 (𝑏 = 3𝑜 → (𝒫 𝑏𝑚 𝒫 𝑏) = (𝒫 3𝑜𝑚 𝒫 3𝑜))
66 pm4.61 442 . . . . . 6 (¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ (((𝜑𝜒) ∧ (𝜃𝜏)) ∧ ¬ 𝜓))
67 clsnim.k0 . . . . . . . . . 10 (𝜑 ↔ (𝑘‘∅) = ∅)
6867a1i 11 . . . . . . . . 9 (𝑏 = 3𝑜 → (𝜑 ↔ (𝑘‘∅) = ∅))
69 clsnim.k2 . . . . . . . . . 10 (𝜒 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠))
7064raleqdv 3136 . . . . . . . . . 10 (𝑏 = 3𝑜 → (∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)))
7169, 70syl5bb 272 . . . . . . . . 9 (𝑏 = 3𝑜 → (𝜒 ↔ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)))
7268, 71anbi12d 746 . . . . . . . 8 (𝑏 = 3𝑜 → ((𝜑𝜒) ↔ ((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠))))
73 clsnim.k3 . . . . . . . . . 10 (𝜃 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)))
7464raleqdv 3136 . . . . . . . . . . 11 (𝑏 = 3𝑜 → (∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
7564, 74raleqbidv 3144 . . . . . . . . . 10 (𝑏 = 3𝑜 → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
7673, 75syl5bb 272 . . . . . . . . 9 (𝑏 = 3𝑜 → (𝜃 ↔ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
77 clsnim.k4 . . . . . . . . . 10 (𝜏 ↔ ∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠))
7864raleqdv 3136 . . . . . . . . . 10 (𝑏 = 3𝑜 → (∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))
7977, 78syl5bb 272 . . . . . . . . 9 (𝑏 = 3𝑜 → (𝜏 ↔ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))
8076, 79anbi12d 746 . . . . . . . 8 (𝑏 = 3𝑜 → ((𝜃𝜏) ↔ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠))))
8172, 80anbi12d 746 . . . . . . 7 (𝑏 = 3𝑜 → (((𝜑𝜒) ∧ (𝜃𝜏)) ↔ (((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))))
82 clsnim.k1 . . . . . . . . 9 (𝜓 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
8364raleqdv 3136 . . . . . . . . . 10 (𝑏 = 3𝑜 → (∀𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∀𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8464, 83raleqbidv 3144 . . . . . . . . 9 (𝑏 = 3𝑜 → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8582, 84syl5bb 272 . . . . . . . 8 (𝑏 = 3𝑜 → (𝜓 ↔ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8685notbid 308 . . . . . . 7 (𝑏 = 3𝑜 → (¬ 𝜓 ↔ ¬ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8781, 86anbi12d 746 . . . . . 6 (𝑏 = 3𝑜 → ((((𝜑𝜒) ∧ (𝜃𝜏)) ∧ ¬ 𝜓) ↔ ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8866, 87syl5bb 272 . . . . 5 (𝑏 = 3𝑜 → (¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8965, 88rexeqbidv 3145 . . . 4 (𝑏 = 3𝑜 → (∃𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ∃𝑘 ∈ (𝒫 3𝑜𝑚 𝒫 3𝑜)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
9089rspcev 3298 . . 3 ((3𝑜 ∈ V ∧ ∃𝑘 ∈ (𝒫 3𝑜𝑚 𝒫 3𝑜)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))) → ∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
91 rexnal2 3037 . . . 4 (∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ¬ ∀𝑏 ∈ V ∀𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
92 ralv 3208 . . . 4 (∀𝑏 ∈ V ∀𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ∀𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
9391, 92xchbinx 324 . . 3 (∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
9490, 93sylib 208 . 2 ((3𝑜 ∈ V ∧ ∃𝑘 ∈ (𝒫 3𝑜𝑚 𝒫 3𝑜)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3𝑜(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3𝑜𝑡 ∈ 𝒫 3𝑜(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))) → ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
952, 63, 94mp2an 707 1 ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏𝑚 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wal 1478   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3189  cun 3557  wss 3559  c0 3896  ifcif 4063  𝒫 cpw 4135  {csn 4153  {cpr 4155  cmpt 4678  Oncon0 5687  suc csuc 5689  wf 5848  cfv 5852  (class class class)co 6610  1𝑜c1o 7505  2𝑜c2o 7506  3𝑜c3o 7507  𝑚 cmap 7809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-reg 8449
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-xor 1462  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-ord 5690  df-on 5691  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1o 7512  df-2o 7513  df-3o 7514  df-map 7811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator