MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncompid Structured version   Visualization version   GIF version

Theorem conncompid 22039
Description: The connected component containing 𝐴 contains 𝐴. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypothesis
Ref Expression
conncomp.2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
Assertion
Ref Expression
conncompid ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑋
Allowed substitution hint:   𝑆(𝑥)

Proof of Theorem conncompid
StepHypRef Expression
1 simpr 487 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑋)
21snssd 4742 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → {𝐴} ⊆ 𝑋)
3 snex 5332 . . . . . 6 {𝐴} ∈ V
43elpw 4543 . . . . 5 ({𝐴} ∈ 𝒫 𝑋 ↔ {𝐴} ⊆ 𝑋)
52, 4sylibr 236 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → {𝐴} ∈ 𝒫 𝑋)
6 snidg 4599 . . . . 5 (𝐴𝑋𝐴 ∈ {𝐴})
76adantl 484 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 ∈ {𝐴})
8 restsn2 21779 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t {𝐴}) = 𝒫 {𝐴})
9 pwsn 4830 . . . . . . 7 𝒫 {𝐴} = {∅, {𝐴}}
10 indisconn 22026 . . . . . . 7 {∅, {𝐴}} ∈ Conn
119, 10eqeltri 2909 . . . . . 6 𝒫 {𝐴} ∈ Conn
128, 11eqeltrdi 2921 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐽t {𝐴}) ∈ Conn)
137, 12jca 514 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → (𝐴 ∈ {𝐴} ∧ (𝐽t {𝐴}) ∈ Conn))
14 eleq2 2901 . . . . . 6 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
15 oveq2 7164 . . . . . . . 8 (𝑥 = {𝐴} → (𝐽t 𝑥) = (𝐽t {𝐴}))
1615eleq1d 2897 . . . . . . 7 (𝑥 = {𝐴} → ((𝐽t 𝑥) ∈ Conn ↔ (𝐽t {𝐴}) ∈ Conn))
1714, 16anbi12d 632 . . . . . 6 (𝑥 = {𝐴} → ((𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn) ↔ (𝐴 ∈ {𝐴} ∧ (𝐽t {𝐴}) ∈ Conn)))
1814, 17anbi12d 632 . . . . 5 (𝑥 = {𝐴} → ((𝐴𝑥 ∧ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)) ↔ (𝐴 ∈ {𝐴} ∧ (𝐴 ∈ {𝐴} ∧ (𝐽t {𝐴}) ∈ Conn))))
1918rspcev 3623 . . . 4 (({𝐴} ∈ 𝒫 𝑋 ∧ (𝐴 ∈ {𝐴} ∧ (𝐴 ∈ {𝐴} ∧ (𝐽t {𝐴}) ∈ Conn))) → ∃𝑥 ∈ 𝒫 𝑋(𝐴𝑥 ∧ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)))
205, 7, 13, 19syl12anc 834 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ∃𝑥 ∈ 𝒫 𝑋(𝐴𝑥 ∧ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)))
21 elunirab 4854 . . 3 (𝐴 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)} ↔ ∃𝑥 ∈ 𝒫 𝑋(𝐴𝑥 ∧ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)))
2220, 21sylibr 236 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴 {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)})
23 conncomp.2 . 2 𝑆 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴𝑥 ∧ (𝐽t 𝑥) ∈ Conn)}
2422, 23eleqtrrdi 2924 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3139  {crab 3142  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4567  {cpr 4569   cuni 4838  cfv 6355  (class class class)co 7156  t crest 16694  TopOnctopon 21518  Conncconn 22019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-oadd 8106  df-er 8289  df-en 8510  df-fin 8513  df-fi 8875  df-rest 16696  df-topgen 16717  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-conn 22020
This theorem is referenced by:  conncompcld  22042  conncompclo  22043  tgpconncompeqg  22720  tgpconncomp  22721
  Copyright terms: Public domain W3C validator