Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrle Structured version   Visualization version   GIF version

Theorem cvrle 34072
Description: The covers relation implies the less-than-or-equal relation. (Contributed by NM, 12-Oct-2011.)
Hypotheses
Ref Expression
cvrle.b 𝐵 = (Base‘𝐾)
cvrle.l = (le‘𝐾)
cvrle.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrle (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 𝑌)

Proof of Theorem cvrle
StepHypRef Expression
1 cvrle.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2621 . . 3 (lt‘𝐾) = (lt‘𝐾)
3 cvrle.c . . 3 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 34064 . 2 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌)
5 cvrle.l . . . 4 = (le‘𝐾)
65, 2pltval 16888 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋(lt‘𝐾)𝑌 ↔ (𝑋 𝑌𝑋𝑌)))
76simprbda 652 . 2 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋(lt‘𝐾)𝑌) → 𝑋 𝑌)
84, 7syldan 487 1 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4618  cfv 5852  Basecbs 15788  lecple 15876  ltcplt 16869  ccvr 34056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-iota 5815  df-fun 5854  df-fv 5860  df-plt 16886  df-covers 34060
This theorem is referenced by:  cvrnbtwn4  34073  cvrcmp  34077  atcvrj2b  34225  atexchcvrN  34233  llncmp  34315  llncvrlpln  34351  lplncmp  34355  lplncvrlvol  34409  lvolcmp  34410
  Copyright terms: Public domain W3C validator