Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem11 Structured version   Visualization version   GIF version

Theorem dalem11 33778
Description: Lemma for dath 33840. Analogue of dalem10 33777 for 𝐸. (Contributed by NM, 23-Jul-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem11.m = (meet‘𝐾)
dalem11.o 𝑂 = (LPlanes‘𝐾)
dalem11.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem11.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem11.x 𝑋 = (𝑌 𝑍)
dalem11.e 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
Assertion
Ref Expression
dalem11 (𝜑𝐸 𝑋)

Proof of Theorem dalem11
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 dalemc.l . . . 4 = (le‘𝐾)
3 dalemc.j . . . 4 = (join‘𝐾)
4 dalemc.a . . . 4 𝐴 = (Atoms‘𝐾)
5 dalem11.y . . . 4 𝑌 = ((𝑃 𝑄) 𝑅)
6 dalem11.z . . . 4 𝑍 = ((𝑆 𝑇) 𝑈)
71, 2, 3, 4, 5, 6dalemrot 33761 . . 3 (𝜑 → (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))))
8 biid 249 . . . 4 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))) ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))))
9 dalem11.m . . . 4 = (meet‘𝐾)
10 dalem11.o . . . 4 𝑂 = (LPlanes‘𝐾)
11 eqid 2606 . . . 4 ((𝑄 𝑅) 𝑃) = ((𝑄 𝑅) 𝑃)
12 eqid 2606 . . . 4 ((𝑇 𝑈) 𝑆) = ((𝑇 𝑈) 𝑆)
13 eqid 2606 . . . 4 (((𝑄 𝑅) 𝑃) ((𝑇 𝑈) 𝑆)) = (((𝑄 𝑅) 𝑃) ((𝑇 𝑈) 𝑆))
14 dalem11.e . . . 4 𝐸 = ((𝑄 𝑅) (𝑇 𝑈))
158, 2, 3, 4, 9, 10, 11, 12, 13, 14dalem10 33777 . . 3 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑄𝐴𝑅𝐴𝑃𝐴) ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) ∧ (((𝑄 𝑅) 𝑃) ∈ 𝑂 ∧ ((𝑇 𝑈) 𝑆) ∈ 𝑂) ∧ ((¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃) ∧ ¬ 𝐶 (𝑃 𝑄)) ∧ (¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆) ∧ ¬ 𝐶 (𝑆 𝑇)) ∧ (𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈) ∧ 𝐶 (𝑃 𝑆)))) → 𝐸 (((𝑄 𝑅) 𝑃) ((𝑇 𝑈) 𝑆)))
167, 15syl 17 . 2 (𝜑𝐸 (((𝑄 𝑅) 𝑃) ((𝑇 𝑈) 𝑆)))
17 dalem11.x . . 3 𝑋 = (𝑌 𝑍)
181, 3, 4dalemqrprot 33752 . . . . 5 (𝜑 → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
1918, 5syl6reqr 2659 . . . 4 (𝜑𝑌 = ((𝑄 𝑅) 𝑃))
201dalemkehl 33727 . . . . . 6 (𝜑𝐾 ∈ HL)
211dalemtea 33734 . . . . . 6 (𝜑𝑇𝐴)
221dalemuea 33735 . . . . . 6 (𝜑𝑈𝐴)
231dalemsea 33733 . . . . . 6 (𝜑𝑆𝐴)
243, 4hlatjrot 33477 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑈𝐴𝑆𝐴)) → ((𝑇 𝑈) 𝑆) = ((𝑆 𝑇) 𝑈))
2520, 21, 22, 23, 24syl13anc 1319 . . . . 5 (𝜑 → ((𝑇 𝑈) 𝑆) = ((𝑆 𝑇) 𝑈))
2625, 6syl6reqr 2659 . . . 4 (𝜑𝑍 = ((𝑇 𝑈) 𝑆))
2719, 26oveq12d 6542 . . 3 (𝜑 → (𝑌 𝑍) = (((𝑄 𝑅) 𝑃) ((𝑇 𝑈) 𝑆)))
2817, 27syl5eq 2652 . 2 (𝜑𝑋 = (((𝑄 𝑅) 𝑃) ((𝑇 𝑈) 𝑆)))
2916, 28breqtrrd 4602 1 (𝜑𝐸 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4574  cfv 5787  (class class class)co 6524  Basecbs 15638  lecple 15718  joincjn 16710  meetcmee 16711  Atomscatm 33368  HLchlt 33455  LPlanesclpl 33596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-preset 16694  df-poset 16712  df-lub 16740  df-glb 16741  df-join 16742  df-meet 16743  df-lat 16812  df-ats 33372  df-atl 33403  df-cvlat 33427  df-hlat 33456  df-lplanes 33603
This theorem is referenced by:  dalem12  33779  dalem16  33783
  Copyright terms: Public domain W3C validator