Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalemkehl Structured version   Visualization version   GIF version

Theorem dalemkehl 35227
 Description: Lemma for dath 35340. Frequently-used utility lemma. (Contributed by NM, 13-Aug-2012.)
Hypothesis
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
Assertion
Ref Expression
dalemkehl (𝜑𝐾 ∈ HL)

Proof of Theorem dalemkehl
StepHypRef Expression
1 dalema.ph . 2 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
2 simp11l 1192 . 2 ((((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))) → 𝐾 ∈ HL)
31, 2sylbi 207 1 (𝜑𝐾 ∈ HL)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   ∈ wcel 2030   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  Basecbs 15904  HLchlt 34955 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1056 This theorem is referenced by:  dalemkelat  35228  dalemkeop  35229  dalempjqeb  35249  dalemsjteb  35250  dalemtjueb  35251  dalemqrprot  35252  dalempnes  35255  dalemqnet  35256  dalempjsen  35257  dalemply  35258  dalemsly  35259  dalemswapyz  35260  dalemrot  35261  dalemrotyz  35262  dalem1  35263  dalemcea  35264  dalem2  35265  dalemdea  35266  dalem3  35268  dalem4  35269  dalem5  35271  dalem-cly  35275  dalem9  35276  dalem11  35278  dalem12  35279  dalem13  35280  dalem15  35282  dalem16  35283  dalem17  35284  dalem18  35285  dalem19  35286  dalemswapyzps  35294  dalemcjden  35296  dalem21  35298  dalem22  35299  dalem23  35300  dalem24  35301  dalem25  35302  dalem27  35303  dalem28  35304  dalem38  35314  dalem39  35315  dalem41  35317  dalem42  35318  dalem43  35319  dalem44  35320  dalem45  35321  dalem51  35327  dalem52  35328  dalem54  35330  dalem55  35331  dalem56  35332  dalem57  35333  dalem58  35334  dalem59  35335  dalem60  35336
 Copyright terms: Public domain W3C validator