Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem17 Structured version   Visualization version   GIF version

Theorem dalem17 36849
Description: Lemma for dath 36905. When planes 𝑌 and 𝑍 are equal, the center of perspectivity 𝐶 is in 𝑌. (Contributed by NM, 1-Aug-2012.)
Hypotheses
Ref Expression
dalema.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalemc.l = (le‘𝐾)
dalemc.j = (join‘𝐾)
dalemc.a 𝐴 = (Atoms‘𝐾)
dalem17.o 𝑂 = (LPlanes‘𝐾)
dalem17.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem17.z 𝑍 = ((𝑆 𝑇) 𝑈)
Assertion
Ref Expression
dalem17 ((𝜑𝑌 = 𝑍) → 𝐶 𝑌)

Proof of Theorem dalem17
StepHypRef Expression
1 dalema.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
21dalemclrju 36805 . . 3 (𝜑𝐶 (𝑅 𝑈))
32adantr 483 . 2 ((𝜑𝑌 = 𝑍) → 𝐶 (𝑅 𝑈))
41dalemkelat 36793 . . . . . 6 (𝜑𝐾 ∈ Lat)
5 dalemc.j . . . . . . 7 = (join‘𝐾)
6 dalemc.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
71, 5, 6dalempjqeb 36814 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
81, 6dalemreb 36810 . . . . . 6 (𝜑𝑅 ∈ (Base‘𝐾))
9 eqid 2820 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
10 dalemc.l . . . . . . 7 = (le‘𝐾)
119, 10, 5latlej2 17666 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑅 ((𝑃 𝑄) 𝑅))
124, 7, 8, 11syl3anc 1366 . . . . 5 (𝜑𝑅 ((𝑃 𝑄) 𝑅))
13 dalem17.y . . . . 5 𝑌 = ((𝑃 𝑄) 𝑅)
1412, 13breqtrrdi 5101 . . . 4 (𝜑𝑅 𝑌)
1514adantr 483 . . 3 ((𝜑𝑌 = 𝑍) → 𝑅 𝑌)
161, 5, 6dalemsjteb 36815 . . . . . . 7 (𝜑 → (𝑆 𝑇) ∈ (Base‘𝐾))
171, 6dalemueb 36813 . . . . . . 7 (𝜑𝑈 ∈ (Base‘𝐾))
189, 10, 5latlej2 17666 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑆 𝑇) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾)) → 𝑈 ((𝑆 𝑇) 𝑈))
194, 16, 17, 18syl3anc 1366 . . . . . 6 (𝜑𝑈 ((𝑆 𝑇) 𝑈))
20 dalem17.z . . . . . 6 𝑍 = ((𝑆 𝑇) 𝑈)
2119, 20breqtrrdi 5101 . . . . 5 (𝜑𝑈 𝑍)
2221adantr 483 . . . 4 ((𝜑𝑌 = 𝑍) → 𝑈 𝑍)
23 simpr 487 . . . 4 ((𝜑𝑌 = 𝑍) → 𝑌 = 𝑍)
2422, 23breqtrrd 5087 . . 3 ((𝜑𝑌 = 𝑍) → 𝑈 𝑌)
25 dalem17.o . . . . . 6 𝑂 = (LPlanes‘𝐾)
261, 25dalemyeb 36818 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐾))
279, 10, 5latjle12 17667 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝑅 𝑌𝑈 𝑌) ↔ (𝑅 𝑈) 𝑌))
284, 8, 17, 26, 27syl13anc 1367 . . . 4 (𝜑 → ((𝑅 𝑌𝑈 𝑌) ↔ (𝑅 𝑈) 𝑌))
2928adantr 483 . . 3 ((𝜑𝑌 = 𝑍) → ((𝑅 𝑌𝑈 𝑌) ↔ (𝑅 𝑈) 𝑌))
3015, 24, 29mpbi2and 710 . 2 ((𝜑𝑌 = 𝑍) → (𝑅 𝑈) 𝑌)
311, 6dalemceb 36807 . . . 4 (𝜑𝐶 ∈ (Base‘𝐾))
321dalemkehl 36792 . . . . 5 (𝜑𝐾 ∈ HL)
331dalemrea 36797 . . . . 5 (𝜑𝑅𝐴)
341dalemuea 36800 . . . . 5 (𝜑𝑈𝐴)
359, 5, 6hlatjcl 36536 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑈𝐴) → (𝑅 𝑈) ∈ (Base‘𝐾))
3632, 33, 34, 35syl3anc 1366 . . . 4 (𝜑 → (𝑅 𝑈) ∈ (Base‘𝐾))
379, 10lattr 17661 . . . 4 ((𝐾 ∈ Lat ∧ (𝐶 ∈ (Base‘𝐾) ∧ (𝑅 𝑈) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾))) → ((𝐶 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑌) → 𝐶 𝑌))
384, 31, 36, 26, 37syl13anc 1367 . . 3 (𝜑 → ((𝐶 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑌) → 𝐶 𝑌))
3938adantr 483 . 2 ((𝜑𝑌 = 𝑍) → ((𝐶 (𝑅 𝑈) ∧ (𝑅 𝑈) 𝑌) → 𝐶 𝑌))
403, 30, 39mp2and 697 1 ((𝜑𝑌 = 𝑍) → 𝐶 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113   class class class wbr 5059  cfv 6348  (class class class)co 7149  Basecbs 16478  lecple 16567  joincjn 17549  Latclat 17650  Atomscatm 36432  HLchlt 36519  LPlanesclpl 36661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-poset 17551  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-lat 17651  df-ats 36436  df-atl 36467  df-cvlat 36491  df-hlat 36520  df-lplanes 36668
This theorem is referenced by:  dalem19  36851  dalem25  36867
  Copyright terms: Public domain W3C validator