Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnwech Structured version   Visualization version   GIF version

Theorem dnwech 37133
Description: Define a well-ordering from a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
dnwech.h 𝐻 = {⟨𝑣, 𝑤⟩ ∣ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})}
Assertion
Ref Expression
dnwech (𝜑𝐻 We 𝐴)
Distinct variable groups:   𝑣,𝐹,𝑤,𝑦   𝑣,𝐺,𝑤,𝑦,𝑧   𝑣,𝐴,𝑤,𝑦,𝑧   𝜑,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝐻(𝑦,𝑧,𝑤,𝑣)   𝑉(𝑦,𝑧,𝑤,𝑣)

Proof of Theorem dnwech
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dnnumch.f . . . . 5 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
2 dnnumch.a . . . . 5 (𝜑𝐴𝑉)
3 dnnumch.g . . . . 5 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
41, 2, 3dnnumch3 37132 . . . 4 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On)
5 f1f1orn 6110 . . . 4 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1-onto→ran (𝑥𝐴 (𝐹 “ {𝑥})))
64, 5syl 17 . . 3 (𝜑 → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1-onto→ran (𝑥𝐴 (𝐹 “ {𝑥})))
7 f1f 6063 . . . . 5 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1→On → (𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On)
8 frn 6015 . . . . 5 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴⟶On → ran (𝑥𝐴 (𝐹 “ {𝑥})) ⊆ On)
94, 7, 83syl 18 . . . 4 (𝜑 → ran (𝑥𝐴 (𝐹 “ {𝑥})) ⊆ On)
10 epweon 6937 . . . 4 E We On
11 wess 5066 . . . 4 (ran (𝑥𝐴 (𝐹 “ {𝑥})) ⊆ On → ( E We On → E We ran (𝑥𝐴 (𝐹 “ {𝑥}))))
129, 10, 11mpisyl 21 . . 3 (𝜑 → E We ran (𝑥𝐴 (𝐹 “ {𝑥})))
13 eqid 2621 . . . 4 {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} = {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)}
1413f1owe 6563 . . 3 ((𝑥𝐴 (𝐹 “ {𝑥})):𝐴1-1-onto→ran (𝑥𝐴 (𝐹 “ {𝑥})) → ( E We ran (𝑥𝐴 (𝐹 “ {𝑥})) → {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} We 𝐴))
156, 12, 14sylc 65 . 2 (𝜑 → {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} We 𝐴)
16 fvex 6163 . . . . . . . . 9 ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ∈ V
1716epelc 4992 . . . . . . . 8 (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ↔ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) ∈ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))
181, 2, 3dnnumch3lem 37131 . . . . . . . . . 10 ((𝜑𝑣𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
1918adantrr 752 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) = (𝐹 “ {𝑣}))
201, 2, 3dnnumch3lem 37131 . . . . . . . . . 10 ((𝜑𝑤𝐴) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
2120adantrl 751 . . . . . . . . 9 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) = (𝐹 “ {𝑤}))
2219, 21eleq12d 2692 . . . . . . . 8 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → (((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) ∈ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤) ↔ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})))
2317, 22syl5rbb 273 . . . . . . 7 ((𝜑 ∧ (𝑣𝐴𝑤𝐴)) → ( (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤}) ↔ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)))
2423pm5.32da 672 . . . . . 6 (𝜑 → (((𝑣𝐴𝑤𝐴) ∧ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})) ↔ ((𝑣𝐴𝑤𝐴) ∧ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))))
2524opabbidv 4683 . . . . 5 (𝜑 → {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤}))} = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))})
26 incom 3788 . . . . . 6 (𝐻 ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ 𝐻)
27 df-xp 5085 . . . . . . 7 (𝐴 × 𝐴) = {⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)}
28 dnwech.h . . . . . . 7 𝐻 = {⟨𝑣, 𝑤⟩ ∣ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})}
2927, 28ineq12i 3795 . . . . . 6 ((𝐴 × 𝐴) ∩ 𝐻) = ({⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)} ∩ {⟨𝑣, 𝑤⟩ ∣ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})})
30 inopab 5217 . . . . . 6 ({⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)} ∩ {⟨𝑣, 𝑤⟩ ∣ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤})}) = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤}))}
3126, 29, 303eqtri 2647 . . . . 5 (𝐻 ∩ (𝐴 × 𝐴)) = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ (𝐹 “ {𝑣}) ∈ (𝐹 “ {𝑤}))}
32 incom 3788 . . . . . 6 ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) = ((𝐴 × 𝐴) ∩ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)})
3327ineq1i 3793 . . . . . 6 ((𝐴 × 𝐴) ∩ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)}) = ({⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)} ∩ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)})
34 inopab 5217 . . . . . 6 ({⟨𝑣, 𝑤⟩ ∣ (𝑣𝐴𝑤𝐴)} ∩ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)}) = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))}
3532, 33, 343eqtri 2647 . . . . 5 ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) = {⟨𝑣, 𝑤⟩ ∣ ((𝑣𝐴𝑤𝐴) ∧ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤))}
3625, 31, 353eqtr4g 2680 . . . 4 (𝜑 → (𝐻 ∩ (𝐴 × 𝐴)) = ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)))
37 weeq1 5067 . . . 4 ((𝐻 ∩ (𝐴 × 𝐴)) = ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) → ((𝐻 ∩ (𝐴 × 𝐴)) We 𝐴 ↔ ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴))
3836, 37syl 17 . . 3 (𝜑 → ((𝐻 ∩ (𝐴 × 𝐴)) We 𝐴 ↔ ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴))
39 weinxp 5152 . . 3 (𝐻 We 𝐴 ↔ (𝐻 ∩ (𝐴 × 𝐴)) We 𝐴)
40 weinxp 5152 . . 3 ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} We 𝐴 ↔ ({⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} ∩ (𝐴 × 𝐴)) We 𝐴)
4138, 39, 403bitr4g 303 . 2 (𝜑 → (𝐻 We 𝐴 ↔ {⟨𝑣, 𝑤⟩ ∣ ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑣) E ((𝑥𝐴 (𝐹 “ {𝑥}))‘𝑤)} We 𝐴))
4215, 41mpbird 247 1 (𝜑𝐻 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3189  cdif 3556  cin 3558  wss 3559  c0 3896  𝒫 cpw 4135  {csn 4153   cint 4445   class class class wbr 4618  {copab 4677  cmpt 4678   E cep 4988   We wwe 5037   × cxp 5077  ccnv 5078  ran crn 5080  cima 5082  Oncon0 5687  wf 5848  1-1wf1 5849  1-1-ontowf1o 5851  cfv 5852  recscrecs 7419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-wrecs 7359  df-recs 7420
This theorem is referenced by:  aomclem3  37141
  Copyright terms: Public domain W3C validator