MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-isom Structured version   Visualization version   GIF version

Definition df-isom 6364
Description: Define the isomorphism predicate. We read this as "𝐻 is an 𝑅, 𝑆 isomorphism of 𝐴 onto 𝐵". Normally, 𝑅 and 𝑆 are ordering relations on 𝐴 and 𝐵 respectively. Definition 6.28 of [TakeutiZaring] p. 32, whose notation is the same as ours except that 𝑅 and 𝑆 are subscripts. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
df-isom (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝐻,𝑦

Detailed syntax breakdown of Definition df-isom
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
3 cR . . 3 class 𝑅
4 cS . . 3 class 𝑆
5 cH . . 3 class 𝐻
61, 2, 3, 4, 5wiso 6356 . 2 wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
71, 2, 5wf1o 6354 . . 3 wff 𝐻:𝐴1-1-onto𝐵
8 vx . . . . . . . 8 setvar 𝑥
98cv 1536 . . . . . . 7 class 𝑥
10 vy . . . . . . . 8 setvar 𝑦
1110cv 1536 . . . . . . 7 class 𝑦
129, 11, 3wbr 5066 . . . . . 6 wff 𝑥𝑅𝑦
139, 5cfv 6355 . . . . . . 7 class (𝐻𝑥)
1411, 5cfv 6355 . . . . . . 7 class (𝐻𝑦)
1513, 14, 4wbr 5066 . . . . . 6 wff (𝐻𝑥)𝑆(𝐻𝑦)
1612, 15wb 208 . . . . 5 wff (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
1716, 10, 1wral 3138 . . . 4 wff 𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
1817, 8, 1wral 3138 . . 3 wff 𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))
197, 18wa 398 . 2 wff (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))
206, 19wb 208 1 wff (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
Colors of variables: wff setvar class
This definition is referenced by:  isoeq1  7070  isoeq2  7071  isoeq3  7072  isoeq4  7073  isoeq5  7074  nfiso  7075  isof1o  7076  isof1oidb  7077  isof1oopb  7078  isorel  7079  soisores  7080  soisoi  7081  isoid  7082  isocnv  7083  isocnv2  7084  isocnv3  7085  isores2  7086  isores3  7088  isotr  7089  isoini2  7092  f1oiso  7104  f1owe  7106  smoiso2  8006  alephiso  9524  compssiso  9796  negiso  11621  om2uzisoi  13323  icopnfhmeo  23547  reefiso  25036  logltb  25183  isoun  30437  xrmulc1cn  31173  wepwsolem  39662  alephiso2  39937  iso0  40659  fourierdlem54  42465  rrx2plordisom  44730
  Copyright terms: Public domain W3C validator