MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domunsn Structured version   Visualization version   GIF version

Theorem domunsn 8667
Description: Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
domunsn (𝐴𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵)

Proof of Theorem domunsn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sdom0 8649 . . . . 5 ¬ 𝐴 ≺ ∅
2 breq2 5070 . . . . 5 (𝐵 = ∅ → (𝐴𝐵𝐴 ≺ ∅))
31, 2mtbiri 329 . . . 4 (𝐵 = ∅ → ¬ 𝐴𝐵)
43con2i 141 . . 3 (𝐴𝐵 → ¬ 𝐵 = ∅)
5 neq0 4309 . . 3 𝐵 = ∅ ↔ ∃𝑧 𝑧𝐵)
64, 5sylib 220 . 2 (𝐴𝐵 → ∃𝑧 𝑧𝐵)
7 domdifsn 8600 . . . . 5 (𝐴𝐵𝐴 ≼ (𝐵 ∖ {𝑧}))
87adantr 483 . . . 4 ((𝐴𝐵𝑧𝐵) → 𝐴 ≼ (𝐵 ∖ {𝑧}))
9 en2sn 8593 . . . . . . 7 ((𝐶 ∈ V ∧ 𝑧 ∈ V) → {𝐶} ≈ {𝑧})
109elvd 3500 . . . . . 6 (𝐶 ∈ V → {𝐶} ≈ {𝑧})
11 endom 8536 . . . . . 6 ({𝐶} ≈ {𝑧} → {𝐶} ≼ {𝑧})
1210, 11syl 17 . . . . 5 (𝐶 ∈ V → {𝐶} ≼ {𝑧})
13 snprc 4653 . . . . . . 7 𝐶 ∈ V ↔ {𝐶} = ∅)
1413biimpi 218 . . . . . 6 𝐶 ∈ V → {𝐶} = ∅)
15 snex 5332 . . . . . . 7 {𝑧} ∈ V
16150dom 8647 . . . . . 6 ∅ ≼ {𝑧}
1714, 16eqbrtrdi 5105 . . . . 5 𝐶 ∈ V → {𝐶} ≼ {𝑧})
1812, 17pm2.61i 184 . . . 4 {𝐶} ≼ {𝑧}
19 incom 4178 . . . . . 6 ((𝐵 ∖ {𝑧}) ∩ {𝑧}) = ({𝑧} ∩ (𝐵 ∖ {𝑧}))
20 disjdif 4421 . . . . . 6 ({𝑧} ∩ (𝐵 ∖ {𝑧})) = ∅
2119, 20eqtri 2844 . . . . 5 ((𝐵 ∖ {𝑧}) ∩ {𝑧}) = ∅
22 undom 8605 . . . . 5 (((𝐴 ≼ (𝐵 ∖ {𝑧}) ∧ {𝐶} ≼ {𝑧}) ∧ ((𝐵 ∖ {𝑧}) ∩ {𝑧}) = ∅) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
2321, 22mpan2 689 . . . 4 ((𝐴 ≼ (𝐵 ∖ {𝑧}) ∧ {𝐶} ≼ {𝑧}) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
248, 18, 23sylancl 588 . . 3 ((𝐴𝐵𝑧𝐵) → (𝐴 ∪ {𝐶}) ≼ ((𝐵 ∖ {𝑧}) ∪ {𝑧}))
25 uncom 4129 . . . 4 ((𝐵 ∖ {𝑧}) ∪ {𝑧}) = ({𝑧} ∪ (𝐵 ∖ {𝑧}))
26 simpr 487 . . . . . 6 ((𝐴𝐵𝑧𝐵) → 𝑧𝐵)
2726snssd 4742 . . . . 5 ((𝐴𝐵𝑧𝐵) → {𝑧} ⊆ 𝐵)
28 undif 4430 . . . . 5 ({𝑧} ⊆ 𝐵 ↔ ({𝑧} ∪ (𝐵 ∖ {𝑧})) = 𝐵)
2927, 28sylib 220 . . . 4 ((𝐴𝐵𝑧𝐵) → ({𝑧} ∪ (𝐵 ∖ {𝑧})) = 𝐵)
3025, 29syl5eq 2868 . . 3 ((𝐴𝐵𝑧𝐵) → ((𝐵 ∖ {𝑧}) ∪ {𝑧}) = 𝐵)
3124, 30breqtrd 5092 . 2 ((𝐴𝐵𝑧𝐵) → (𝐴 ∪ {𝐶}) ≼ 𝐵)
326, 31exlimddv 1936 1 (𝐴𝐵 → (𝐴 ∪ {𝐶}) ≼ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wex 1780  wcel 2114  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4567   class class class wbr 5066  cen 8506  cdom 8507  csdm 8508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-suc 6197  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512
This theorem is referenced by:  canthp1lem1  10074
  Copyright terms: Public domain W3C validator