MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undom Structured version   Visualization version   GIF version

Theorem undom 7910
Description: Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
undom (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))

Proof of Theorem undom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 7824 . . . . . . 7 Rel ≼
21brrelex2i 5073 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
3 domeng 7832 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
42, 3syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
54ibi 254 . . . 4 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝑥𝐵))
61brrelexi 5072 . . . . . . 7 (𝐶𝐷𝐶 ∈ V)
7 difss 3698 . . . . . . 7 (𝐶𝐴) ⊆ 𝐶
8 ssdomg 7864 . . . . . . 7 (𝐶 ∈ V → ((𝐶𝐴) ⊆ 𝐶 → (𝐶𝐴) ≼ 𝐶))
96, 7, 8mpisyl 21 . . . . . 6 (𝐶𝐷 → (𝐶𝐴) ≼ 𝐶)
10 domtr 7872 . . . . . 6 (((𝐶𝐴) ≼ 𝐶𝐶𝐷) → (𝐶𝐴) ≼ 𝐷)
119, 10mpancom 699 . . . . 5 (𝐶𝐷 → (𝐶𝐴) ≼ 𝐷)
121brrelex2i 5073 . . . . . . 7 ((𝐶𝐴) ≼ 𝐷𝐷 ∈ V)
13 domeng 7832 . . . . . . 7 (𝐷 ∈ V → ((𝐶𝐴) ≼ 𝐷 ↔ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1412, 13syl 17 . . . . . 6 ((𝐶𝐴) ≼ 𝐷 → ((𝐶𝐴) ≼ 𝐷 ↔ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1514ibi 254 . . . . 5 ((𝐶𝐴) ≼ 𝐷 → ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷))
1611, 15syl 17 . . . 4 (𝐶𝐷 → ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷))
175, 16anim12i 587 . . 3 ((𝐴𝐵𝐶𝐷) → (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1817adantr 479 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
19 eeanv 2169 . . 3 (∃𝑥𝑦((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) ↔ (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
20 simprll 797 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐴𝑥)
21 simprrl 799 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐶𝐴) ≈ 𝑦)
22 disjdif 3991 . . . . . . . 8 (𝐴 ∩ (𝐶𝐴)) = ∅
2322a1i 11 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴 ∩ (𝐶𝐴)) = ∅)
24 ss2in 3801 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐷) → (𝑥𝑦) ⊆ (𝐵𝐷))
2524ad2ant2l 777 . . . . . . . . 9 (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝑥𝑦) ⊆ (𝐵𝐷))
2625adantl 480 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ⊆ (𝐵𝐷))
27 simplr 787 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐵𝐷) = ∅)
28 sseq0 3926 . . . . . . . 8 (((𝑥𝑦) ⊆ (𝐵𝐷) ∧ (𝐵𝐷) = ∅) → (𝑥𝑦) = ∅)
2926, 27, 28syl2anc 690 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) = ∅)
30 undif2 3995 . . . . . . . 8 (𝐴 ∪ (𝐶𝐴)) = (𝐴𝐶)
31 unen 7902 . . . . . . . 8 (((𝐴𝑥 ∧ (𝐶𝐴) ≈ 𝑦) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝑥𝑦) = ∅)) → (𝐴 ∪ (𝐶𝐴)) ≈ (𝑥𝑦))
3230, 31syl5eqbrr 4613 . . . . . . 7 (((𝐴𝑥 ∧ (𝐶𝐴) ≈ 𝑦) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝑥𝑦) = ∅)) → (𝐴𝐶) ≈ (𝑥𝑦))
3320, 21, 23, 29, 32syl22anc 1318 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴𝐶) ≈ (𝑥𝑦))
342ad3antrrr 761 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐵 ∈ V)
351brrelex2i 5073 . . . . . . . . 9 (𝐶𝐷𝐷 ∈ V)
3635ad3antlr 762 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐷 ∈ V)
37 unexg 6834 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
3834, 36, 37syl2anc 690 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐵𝐷) ∈ V)
39 unss12 3746 . . . . . . . . 9 ((𝑥𝐵𝑦𝐷) → (𝑥𝑦) ⊆ (𝐵𝐷))
4039ad2ant2l 777 . . . . . . . 8 (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝑥𝑦) ⊆ (𝐵𝐷))
4140adantl 480 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ⊆ (𝐵𝐷))
42 ssdomg 7864 . . . . . . 7 ((𝐵𝐷) ∈ V → ((𝑥𝑦) ⊆ (𝐵𝐷) → (𝑥𝑦) ≼ (𝐵𝐷)))
4338, 41, 42sylc 62 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ≼ (𝐵𝐷))
44 endomtr 7877 . . . . . 6 (((𝐴𝐶) ≈ (𝑥𝑦) ∧ (𝑥𝑦) ≼ (𝐵𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷))
4533, 43, 44syl2anc 690 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴𝐶) ≼ (𝐵𝐷))
4645ex 448 . . . 4 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4746exlimdvv 1848 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (∃𝑥𝑦((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4819, 47syl5bir 231 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → ((∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4918, 48mpd 15 1 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wex 1694  wcel 1976  Vcvv 3172  cdif 3536  cun 3537  cin 3538  wss 3539  c0 3873   class class class wbr 4577  cen 7815  cdom 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-en 7819  df-dom 7820
This theorem is referenced by:  domunsncan  7922  domunsn  7972  sucdom2  8018  unxpdom2  8030  sucxpdom  8031  fodomfi  8101  uncdadom  8853  cdadom1  8868
  Copyright terms: Public domain W3C validator