MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undom Structured version   Visualization version   GIF version

Theorem undom 8605
Description: Dominance law for union. Proposition 4.24(a) of [Mendelson] p. 257. (Contributed by NM, 3-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
undom (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))

Proof of Theorem undom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 8515 . . . . . . 7 Rel ≼
21brrelex2i 5609 . . . . . 6 (𝐴𝐵𝐵 ∈ V)
3 domeng 8523 . . . . . 6 (𝐵 ∈ V → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
42, 3syl 17 . . . . 5 (𝐴𝐵 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
54ibi 269 . . . 4 (𝐴𝐵 → ∃𝑥(𝐴𝑥𝑥𝐵))
61brrelex1i 5608 . . . . . . 7 (𝐶𝐷𝐶 ∈ V)
7 difss 4108 . . . . . . 7 (𝐶𝐴) ⊆ 𝐶
8 ssdomg 8555 . . . . . . 7 (𝐶 ∈ V → ((𝐶𝐴) ⊆ 𝐶 → (𝐶𝐴) ≼ 𝐶))
96, 7, 8mpisyl 21 . . . . . 6 (𝐶𝐷 → (𝐶𝐴) ≼ 𝐶)
10 domtr 8562 . . . . . 6 (((𝐶𝐴) ≼ 𝐶𝐶𝐷) → (𝐶𝐴) ≼ 𝐷)
119, 10mpancom 686 . . . . 5 (𝐶𝐷 → (𝐶𝐴) ≼ 𝐷)
121brrelex2i 5609 . . . . . . 7 ((𝐶𝐴) ≼ 𝐷𝐷 ∈ V)
13 domeng 8523 . . . . . . 7 (𝐷 ∈ V → ((𝐶𝐴) ≼ 𝐷 ↔ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1412, 13syl 17 . . . . . 6 ((𝐶𝐴) ≼ 𝐷 → ((𝐶𝐴) ≼ 𝐷 ↔ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1514ibi 269 . . . . 5 ((𝐶𝐴) ≼ 𝐷 → ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷))
1611, 15syl 17 . . . 4 (𝐶𝐷 → ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷))
175, 16anim12i 614 . . 3 ((𝐴𝐵𝐶𝐷) → (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
1817adantr 483 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
19 exdistrv 1956 . . 3 (∃𝑥𝑦((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) ↔ (∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)))
20 simprll 777 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐴𝑥)
21 simprrl 779 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐶𝐴) ≈ 𝑦)
22 disjdif 4421 . . . . . . . 8 (𝐴 ∩ (𝐶𝐴)) = ∅
2322a1i 11 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴 ∩ (𝐶𝐴)) = ∅)
24 ss2in 4213 . . . . . . . . . 10 ((𝑥𝐵𝑦𝐷) → (𝑥𝑦) ⊆ (𝐵𝐷))
2524ad2ant2l 744 . . . . . . . . 9 (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝑥𝑦) ⊆ (𝐵𝐷))
2625adantl 484 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ⊆ (𝐵𝐷))
27 simplr 767 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐵𝐷) = ∅)
28 sseq0 4353 . . . . . . . 8 (((𝑥𝑦) ⊆ (𝐵𝐷) ∧ (𝐵𝐷) = ∅) → (𝑥𝑦) = ∅)
2926, 27, 28syl2anc 586 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) = ∅)
30 undif2 4425 . . . . . . . 8 (𝐴 ∪ (𝐶𝐴)) = (𝐴𝐶)
31 unen 8596 . . . . . . . 8 (((𝐴𝑥 ∧ (𝐶𝐴) ≈ 𝑦) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝑥𝑦) = ∅)) → (𝐴 ∪ (𝐶𝐴)) ≈ (𝑥𝑦))
3230, 31eqbrtrrid 5102 . . . . . . 7 (((𝐴𝑥 ∧ (𝐶𝐴) ≈ 𝑦) ∧ ((𝐴 ∩ (𝐶𝐴)) = ∅ ∧ (𝑥𝑦) = ∅)) → (𝐴𝐶) ≈ (𝑥𝑦))
3320, 21, 23, 29, 32syl22anc 836 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴𝐶) ≈ (𝑥𝑦))
342ad3antrrr 728 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐵 ∈ V)
351brrelex2i 5609 . . . . . . . . 9 (𝐶𝐷𝐷 ∈ V)
3635ad3antlr 729 . . . . . . . 8 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → 𝐷 ∈ V)
37 unexg 7472 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵𝐷) ∈ V)
3834, 36, 37syl2anc 586 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐵𝐷) ∈ V)
39 unss12 4158 . . . . . . . . 9 ((𝑥𝐵𝑦𝐷) → (𝑥𝑦) ⊆ (𝐵𝐷))
4039ad2ant2l 744 . . . . . . . 8 (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝑥𝑦) ⊆ (𝐵𝐷))
4140adantl 484 . . . . . . 7 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ⊆ (𝐵𝐷))
42 ssdomg 8555 . . . . . . 7 ((𝐵𝐷) ∈ V → ((𝑥𝑦) ⊆ (𝐵𝐷) → (𝑥𝑦) ≼ (𝐵𝐷)))
4338, 41, 42sylc 65 . . . . . 6 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝑥𝑦) ≼ (𝐵𝐷))
44 endomtr 8567 . . . . . 6 (((𝐴𝐶) ≈ (𝑥𝑦) ∧ (𝑥𝑦) ≼ (𝐵𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷))
4533, 43, 44syl2anc 586 . . . . 5 ((((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) ∧ ((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷))) → (𝐴𝐶) ≼ (𝐵𝐷))
4645ex 415 . . . 4 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4746exlimdvv 1935 . . 3 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (∃𝑥𝑦((𝐴𝑥𝑥𝐵) ∧ ((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4819, 47syl5bir 245 . 2 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → ((∃𝑥(𝐴𝑥𝑥𝐵) ∧ ∃𝑦((𝐶𝐴) ≈ 𝑦𝑦𝐷)) → (𝐴𝐶) ≼ (𝐵𝐷)))
4918, 48mpd 15 1 (((𝐴𝐵𝐶𝐷) ∧ (𝐵𝐷) = ∅) → (𝐴𝐶) ≼ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291   class class class wbr 5066  cen 8506  cdom 8507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-en 8510  df-dom 8511
This theorem is referenced by:  domunsncan  8617  domunsn  8667  sucdom2  8714  unxpdom2  8726  sucxpdom  8727  fodomfi  8797  undjudom  9593  djudom1  9608
  Copyright terms: Public domain W3C validator