Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnseqom Structured version   Visualization version   GIF version

Theorem fnseqom 7547
 Description: An index-aware recursive definition defines a function on the natural numbers. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Hypothesis
Ref Expression
seqom.a 𝐺 = seq𝜔(𝐹, 𝐼)
Assertion
Ref Expression
fnseqom 𝐺 Fn ω

Proof of Theorem fnseqom
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqomlem0 7541 . . 3 rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ ⟨suc 𝑐, (𝑐𝐹𝑑)⟩), ⟨∅, ( I ‘𝐼)⟩)
21seqomlem2 7543 . 2 (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω) Fn ω
3 seqom.a . . . 4 𝐺 = seq𝜔(𝐹, 𝐼)
4 df-seqom 7540 . . . 4 seq𝜔(𝐹, 𝐼) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)
53, 4eqtri 2643 . . 3 𝐺 = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)
65fneq1i 5983 . 2 (𝐺 Fn ω ↔ (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐹𝑏)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω) Fn ω)
72, 6mpbir 221 1 𝐺 Fn ω
 Colors of variables: wff setvar class Syntax hints:   = wceq 1482  Vcvv 3198  ∅c0 3913  ⟨cop 4181   I cid 5021   “ cima 5115  suc csuc 5723   Fn wfn 5881  ‘cfv 5886  (class class class)co 6647   ↦ cmpt2 6649  ωcom 7062  reccrdg 7502  seq𝜔cseqom 7539 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-seqom 7540 This theorem is referenced by:  cantnfvalf  8559  fin23lem16  9154  fin23lem20  9156  fin23lem17  9157  fin23lem21  9158  fin23lem31  9162
 Copyright terms: Public domain W3C validator