MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem31 Structured version   Visualization version   GIF version

Theorem fin23lem31 9765
Description: Lemma for fin23 9811. The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem31 ((𝑡:ω–1-1𝑉𝐺𝐹 ran 𝑡𝐺) → ran 𝑍 ran 𝑡)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑉,𝑎   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎,𝐺,𝑡,𝑥
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝐺(𝑧,𝑤,𝑣,𝑢,𝑖)   𝑉(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem31
StepHypRef Expression
1 fin23lem17.f . . . 4 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
21ssfin3ds 9752 . . 3 ((𝐺𝐹 ran 𝑡𝐺) → ran 𝑡𝐹)
3 fin23lem.a . . . . . 6 𝑈 = seqω((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
4 fin23lem.b . . . . . 6 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
5 fin23lem.c . . . . . 6 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
6 fin23lem.d . . . . . 6 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
7 fin23lem.e . . . . . 6 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
83, 1, 4, 5, 6, 7fin23lem29 9763 . . . . 5 ran 𝑍 ran 𝑡
98a1i 11 . . . 4 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑍 ran 𝑡)
103, 1fin23lem21 9761 . . . . . . 7 (( ran 𝑡𝐹𝑡:ω–1-1𝑉) → ran 𝑈 ≠ ∅)
1110ancoms 461 . . . . . 6 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑈 ≠ ∅)
12 n0 4310 . . . . . 6 ( ran 𝑈 ≠ ∅ ↔ ∃𝑎 𝑎 ran 𝑈)
1311, 12sylib 220 . . . . 5 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ∃𝑎 𝑎 ran 𝑈)
143fnseqom 8091 . . . . . . . . . . . . 13 𝑈 Fn ω
15 fndm 6455 . . . . . . . . . . . . 13 (𝑈 Fn ω → dom 𝑈 = ω)
1614, 15ax-mp 5 . . . . . . . . . . . 12 dom 𝑈 = ω
17 peano1 7601 . . . . . . . . . . . . 13 ∅ ∈ ω
1817ne0ii 4303 . . . . . . . . . . . 12 ω ≠ ∅
1916, 18eqnetri 3086 . . . . . . . . . . 11 dom 𝑈 ≠ ∅
20 dm0rn0 5795 . . . . . . . . . . . 12 (dom 𝑈 = ∅ ↔ ran 𝑈 = ∅)
2120necon3bii 3068 . . . . . . . . . . 11 (dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅)
2219, 21mpbi 232 . . . . . . . . . 10 ran 𝑈 ≠ ∅
23 intssuni 4898 . . . . . . . . . 10 (ran 𝑈 ≠ ∅ → ran 𝑈 ran 𝑈)
2422, 23ax-mp 5 . . . . . . . . 9 ran 𝑈 ran 𝑈
253fin23lem16 9757 . . . . . . . . 9 ran 𝑈 = ran 𝑡
2624, 25sseqtri 4003 . . . . . . . 8 ran 𝑈 ran 𝑡
2726sseli 3963 . . . . . . 7 (𝑎 ran 𝑈𝑎 ran 𝑡)
28 f1fun 6577 . . . . . . . . . . . . 13 (𝑡:ω–1-1𝑉 → Fun 𝑡)
2928adantr 483 . . . . . . . . . . . 12 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → Fun 𝑡)
303, 1, 4, 5, 6, 7fin23lem30 9764 . . . . . . . . . . . 12 (Fun 𝑡 → ( ran 𝑍 ran 𝑈) = ∅)
3129, 30syl 17 . . . . . . . . . . 11 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ( ran 𝑍 ran 𝑈) = ∅)
32 disj 4399 . . . . . . . . . . 11 (( ran 𝑍 ran 𝑈) = ∅ ↔ ∀𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈)
3331, 32sylib 220 . . . . . . . . . 10 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ∀𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈)
34 rsp 3205 . . . . . . . . . 10 (∀𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈 → (𝑎 ran 𝑍 → ¬ 𝑎 ran 𝑈))
3533, 34syl 17 . . . . . . . . 9 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → (𝑎 ran 𝑍 → ¬ 𝑎 ran 𝑈))
3635con2d 136 . . . . . . . 8 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → (𝑎 ran 𝑈 → ¬ 𝑎 ran 𝑍))
3736imp 409 . . . . . . 7 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → ¬ 𝑎 ran 𝑍)
38 nelne1 3113 . . . . . . 7 ((𝑎 ran 𝑡 ∧ ¬ 𝑎 ran 𝑍) → ran 𝑡 ran 𝑍)
3927, 37, 38syl2an2 684 . . . . . 6 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → ran 𝑡 ran 𝑍)
4039necomd 3071 . . . . 5 (((𝑡:ω–1-1𝑉 ran 𝑡𝐹) ∧ 𝑎 ran 𝑈) → ran 𝑍 ran 𝑡)
4113, 40exlimddv 1936 . . . 4 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑍 ran 𝑡)
42 df-pss 3954 . . . 4 ( ran 𝑍 ran 𝑡 ↔ ( ran 𝑍 ran 𝑡 ran 𝑍 ran 𝑡))
439, 41, 42sylanbrc 585 . . 3 ((𝑡:ω–1-1𝑉 ran 𝑡𝐹) → ran 𝑍 ran 𝑡)
442, 43sylan2 594 . 2 ((𝑡:ω–1-1𝑉 ∧ (𝐺𝐹 ran 𝑡𝐺)) → ran 𝑍 ran 𝑡)
45443impb 1111 1 ((𝑡:ω–1-1𝑉𝐺𝐹 ran 𝑡𝐺) → ran 𝑍 ran 𝑡)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wne 3016  wral 3138  {crab 3142  Vcvv 3494  cdif 3933  cin 3935  wss 3936  wpss 3937  c0 4291  ifcif 4467  𝒫 cpw 4539   cuni 4838   cint 4876   class class class wbr 5066  cmpt 5146  dom cdm 5555  ran crn 5556  ccom 5559  suc csuc 6193  Fun wfun 6349   Fn wfn 6350  1-1wf1 6352  cfv 6355  crio 7113  (class class class)co 7156  cmpo 7158  ωcom 7580  seqωcseqom 8083  m cmap 8406  cen 8506  Fincfn 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-seqom 8084  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368
This theorem is referenced by:  fin23lem32  9766
  Copyright terms: Public domain W3C validator