Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fphpd Structured version   Visualization version   GIF version

Theorem fphpd 36288
Description: Pigeonhole principle expressed with implicit substitution. If the range is smaller than the domain, two inputs must be mapped to the same output. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
fphpd.a (𝜑𝐵𝐴)
fphpd.b ((𝜑𝑥𝐴) → 𝐶𝐵)
fphpd.c (𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
fphpd (𝜑 → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem fphpd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnsym 7847 . . . 4 (𝐴𝐵 → ¬ 𝐵𝐴)
2 fphpd.a . . . 4 (𝜑𝐵𝐴)
31, 2nsyl3 131 . . 3 (𝜑 → ¬ 𝐴𝐵)
4 relsdom 7724 . . . . . . 7 Rel ≺
54brrelexi 4976 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
62, 5syl 17 . . . . 5 (𝜑𝐵 ∈ V)
76adantr 479 . . . 4 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → 𝐵 ∈ V)
8 nfv 1796 . . . . . . . . 9 𝑥(𝜑𝑎𝐴)
9 nfcsb1v 3419 . . . . . . . . . 10 𝑥𝑎 / 𝑥𝐶
109nfel1 2669 . . . . . . . . 9 𝑥𝑎 / 𝑥𝐶𝐵
118, 10nfim 2051 . . . . . . . 8 𝑥((𝜑𝑎𝐴) → 𝑎 / 𝑥𝐶𝐵)
12 eleq1 2580 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
1312anbi2d 735 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝜑𝑥𝐴) ↔ (𝜑𝑎𝐴)))
14 csbeq1a 3412 . . . . . . . . . 10 (𝑥 = 𝑎𝐶 = 𝑎 / 𝑥𝐶)
1514eleq1d 2576 . . . . . . . . 9 (𝑥 = 𝑎 → (𝐶𝐵𝑎 / 𝑥𝐶𝐵))
1613, 15imbi12d 332 . . . . . . . 8 (𝑥 = 𝑎 → (((𝜑𝑥𝐴) → 𝐶𝐵) ↔ ((𝜑𝑎𝐴) → 𝑎 / 𝑥𝐶𝐵)))
17 fphpd.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝐵)
1811, 16, 17chvar 2153 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎 / 𝑥𝐶𝐵)
1918ex 448 . . . . . 6 (𝜑 → (𝑎𝐴𝑎 / 𝑥𝐶𝐵))
2019adantr 479 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → (𝑎𝐴𝑎 / 𝑥𝐶𝐵))
21 csbid 3411 . . . . . . . . . . 11 𝑥 / 𝑥𝐶 = 𝐶
22 vex 3080 . . . . . . . . . . . 12 𝑦 ∈ V
23 fphpd.c . . . . . . . . . . . 12 (𝑥 = 𝑦𝐶 = 𝐷)
2422, 23csbie 3429 . . . . . . . . . . 11 𝑦 / 𝑥𝐶 = 𝐷
2521, 24eqeq12i 2528 . . . . . . . . . 10 (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝐶 = 𝐷)
2625imbi1i 337 . . . . . . . . 9 ((𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) ↔ (𝐶 = 𝐷𝑥 = 𝑦))
27262ralbii 2868 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴 (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) ↔ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
28 nfcsb1v 3419 . . . . . . . . . . . 12 𝑥𝑦 / 𝑥𝐶
299, 28nfeq 2666 . . . . . . . . . . 11 𝑥𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶
30 nfv 1796 . . . . . . . . . . 11 𝑥 𝑎 = 𝑦
3129, 30nfim 2051 . . . . . . . . . 10 𝑥(𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 = 𝑦)
32 nfv 1796 . . . . . . . . . 10 𝑦(𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)
33 csbeq1 3406 . . . . . . . . . . . 12 (𝑥 = 𝑎𝑥 / 𝑥𝐶 = 𝑎 / 𝑥𝐶)
3433eqeq1d 2516 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶))
35 equequ1 1902 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑥 = 𝑦𝑎 = 𝑦))
3634, 35imbi12d 332 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) ↔ (𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 = 𝑦)))
37 csbeq1 3406 . . . . . . . . . . . 12 (𝑦 = 𝑏𝑦 / 𝑥𝐶 = 𝑏 / 𝑥𝐶)
3837eqeq2d 2524 . . . . . . . . . . 11 (𝑦 = 𝑏 → (𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶))
39 equequ2 1903 . . . . . . . . . . 11 (𝑦 = 𝑏 → (𝑎 = 𝑦𝑎 = 𝑏))
4038, 39imbi12d 332 . . . . . . . . . 10 (𝑦 = 𝑏 → ((𝑎 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑎 = 𝑦) ↔ (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4131, 32, 36, 40rspc2 3196 . . . . . . . . 9 ((𝑎𝐴𝑏𝐴) → (∀𝑥𝐴𝑦𝐴 (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4241com12 32 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴 (𝑥 / 𝑥𝐶 = 𝑦 / 𝑥𝐶𝑥 = 𝑦) → ((𝑎𝐴𝑏𝐴) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4327, 42sylbir 223 . . . . . . 7 (∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦) → ((𝑎𝐴𝑏𝐴) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
44 id 22 . . . . . . . 8 ((𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏))
45 csbeq1 3406 . . . . . . . 8 (𝑎 = 𝑏𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶)
4644, 45impbid1 213 . . . . . . 7 ((𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏))
4743, 46syl6 34 . . . . . 6 (∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦) → ((𝑎𝐴𝑏𝐴) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4847adantl 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → ((𝑎𝐴𝑏𝐴) → (𝑎 / 𝑥𝐶 = 𝑏 / 𝑥𝐶𝑎 = 𝑏)))
4920, 48dom2d 7758 . . . 4 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → (𝐵 ∈ V → 𝐴𝐵))
507, 49mpd 15 . . 3 ((𝜑 ∧ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦)) → 𝐴𝐵)
513, 50mtand 688 . 2 (𝜑 → ¬ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
52 ancom 464 . . . . . . 7 ((¬ 𝑥 = 𝑦𝐶 = 𝐷) ↔ (𝐶 = 𝐷 ∧ ¬ 𝑥 = 𝑦))
53 df-ne 2686 . . . . . . . 8 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
5453anbi1i 726 . . . . . . 7 ((𝑥𝑦𝐶 = 𝐷) ↔ (¬ 𝑥 = 𝑦𝐶 = 𝐷))
55 pm4.61 440 . . . . . . 7 (¬ (𝐶 = 𝐷𝑥 = 𝑦) ↔ (𝐶 = 𝐷 ∧ ¬ 𝑥 = 𝑦))
5652, 54, 553bitr4i 290 . . . . . 6 ((𝑥𝑦𝐶 = 𝐷) ↔ ¬ (𝐶 = 𝐷𝑥 = 𝑦))
5756rexbii 2927 . . . . 5 (∃𝑦𝐴 (𝑥𝑦𝐶 = 𝐷) ↔ ∃𝑦𝐴 ¬ (𝐶 = 𝐷𝑥 = 𝑦))
58 rexnal 2882 . . . . 5 (∃𝑦𝐴 ¬ (𝐶 = 𝐷𝑥 = 𝑦) ↔ ¬ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
5957, 58bitri 262 . . . 4 (∃𝑦𝐴 (𝑥𝑦𝐶 = 𝐷) ↔ ¬ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
6059rexbii 2927 . . 3 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷) ↔ ∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
61 rexnal 2882 . . 3 (∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
6260, 61bitri 262 . 2 (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝐶 = 𝐷𝑥 = 𝑦))
6351, 62sylibr 222 1 (𝜑 → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1938  wne 2684  wral 2800  wrex 2801  Vcvv 3077  csb 3403   class class class wbr 4481  cdom 7715  csdm 7716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-er 7505  df-en 7718  df-dom 7719  df-sdom 7720
This theorem is referenced by:  fphpdo  36289  pellex  36307
  Copyright terms: Public domain W3C validator