MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem3 Structured version   Visualization version   GIF version

Theorem fpwwe2lem3 10055
Description: Lemma for fpwwe2 10065. (Contributed by Mario Carneiro, 19-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴 ∈ V)
fpwwe2lem4.4 (𝜑𝑋𝑊𝑅)
Assertion
Ref Expression
fpwwe2lem3 ((𝜑𝐵𝑋) → ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵)
Distinct variable groups:   𝑦,𝑢,𝐵   𝑢,𝑟,𝑥,𝑦,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑅,𝑟,𝑢,𝑥,𝑦   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)   𝐵(𝑥,𝑟)

Proof of Theorem fpwwe2lem3
StepHypRef Expression
1 fpwwe2lem4.4 . . . . 5 (𝜑𝑋𝑊𝑅)
2 fpwwe2.1 . . . . . 6 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
3 fpwwe2.2 . . . . . 6 (𝜑𝐴 ∈ V)
42, 3fpwwe2lem2 10054 . . . . 5 (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦))))
51, 4mpbid 234 . . . 4 (𝜑 → ((𝑋𝐴𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))
65simprrd 772 . . 3 (𝜑 → ∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)
7 sneq 4577 . . . . . 6 (𝑦 = 𝐵 → {𝑦} = {𝐵})
87imaeq2d 5929 . . . . 5 (𝑦 = 𝐵 → (𝑅 “ {𝑦}) = (𝑅 “ {𝐵}))
9 eqeq2 2833 . . . . 5 (𝑦 = 𝐵 → ((𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦 ↔ (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵))
108, 9sbceqbid 3779 . . . 4 (𝑦 = 𝐵 → ([(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦[(𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵))
1110rspccva 3622 . . 3 ((∀𝑦𝑋 [(𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦𝐵𝑋) → [(𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵)
126, 11sylan 582 . 2 ((𝜑𝐵𝑋) → [(𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵)
13 cnvimass 5949 . . . . 5 (𝑅 “ {𝐵}) ⊆ dom 𝑅
142relopabi 5694 . . . . . . 7 Rel 𝑊
1514brrelex2i 5609 . . . . . 6 (𝑋𝑊𝑅𝑅 ∈ V)
16 dmexg 7613 . . . . . 6 (𝑅 ∈ V → dom 𝑅 ∈ V)
171, 15, 163syl 18 . . . . 5 (𝜑 → dom 𝑅 ∈ V)
18 ssexg 5227 . . . . 5 (((𝑅 “ {𝐵}) ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V) → (𝑅 “ {𝐵}) ∈ V)
1913, 17, 18sylancr 589 . . . 4 (𝜑 → (𝑅 “ {𝐵}) ∈ V)
20 id 22 . . . . . . 7 (𝑢 = (𝑅 “ {𝐵}) → 𝑢 = (𝑅 “ {𝐵}))
2120sqxpeqd 5587 . . . . . . . 8 (𝑢 = (𝑅 “ {𝐵}) → (𝑢 × 𝑢) = ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))
2221ineq2d 4189 . . . . . . 7 (𝑢 = (𝑅 “ {𝐵}) → (𝑅 ∩ (𝑢 × 𝑢)) = (𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵}))))
2320, 22oveq12d 7174 . . . . . 6 (𝑢 = (𝑅 “ {𝐵}) → (𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))))
2423eqeq1d 2823 . . . . 5 (𝑢 = (𝑅 “ {𝐵}) → ((𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵 ↔ ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵))
2524sbcieg 3810 . . . 4 ((𝑅 “ {𝐵}) ∈ V → ([(𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵 ↔ ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵))
2619, 25syl 17 . . 3 (𝜑 → ([(𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵 ↔ ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵))
2726adantr 483 . 2 ((𝜑𝐵𝑋) → ([(𝑅 “ {𝐵}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝐵 ↔ ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵))
2812, 27mpbid 234 1 ((𝜑𝐵𝑋) → ((𝑅 “ {𝐵})𝐹(𝑅 ∩ ((𝑅 “ {𝐵}) × (𝑅 “ {𝐵})))) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  [wsbc 3772  cin 3935  wss 3936  {csn 4567   class class class wbr 5066  {copab 5128   We wwe 5513   × cxp 5553  ccnv 5554  dom cdm 5555  cima 5558  (class class class)co 7156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fv 6363  df-ov 7159
This theorem is referenced by:  fpwwe2lem8  10059  fpwwe2lem12  10063  fpwwe2lem13  10064  fpwwe2  10065  canthwelem  10072  pwfseqlem4  10084
  Copyright terms: Public domain W3C validator