MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsnfsupp Structured version   Visualization version   GIF version

Theorem funsnfsupp 8243
Description: Finite support for a function extended by a singleton. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by AV, 19-Jul-2019.)
Assertion
Ref Expression
funsnfsupp (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))

Proof of Theorem funsnfsupp
StepHypRef Expression
1 funsng 5895 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → Fun {⟨𝑋, 𝑌⟩})
2 simpl 473 . . . . . . . . 9 ((Fun 𝐹𝑋 ∉ dom 𝐹) → Fun 𝐹)
31, 2anim12ci 590 . . . . . . . 8 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → (Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}))
4 dmsnopg 5565 . . . . . . . . . . 11 (𝑌𝑊 → dom {⟨𝑋, 𝑌⟩} = {𝑋})
54adantl 482 . . . . . . . . . 10 ((𝑋𝑉𝑌𝑊) → dom {⟨𝑋, 𝑌⟩} = {𝑋})
65ineq2d 3792 . . . . . . . . 9 ((𝑋𝑉𝑌𝑊) → (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = (dom 𝐹 ∩ {𝑋}))
7 df-nel 2894 . . . . . . . . . . 11 (𝑋 ∉ dom 𝐹 ↔ ¬ 𝑋 ∈ dom 𝐹)
8 disjsn 4216 . . . . . . . . . . 11 ((dom 𝐹 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ dom 𝐹)
97, 8sylbb2 228 . . . . . . . . . 10 (𝑋 ∉ dom 𝐹 → (dom 𝐹 ∩ {𝑋}) = ∅)
109adantl 482 . . . . . . . . 9 ((Fun 𝐹𝑋 ∉ dom 𝐹) → (dom 𝐹 ∩ {𝑋}) = ∅)
116, 10sylan9eq 2675 . . . . . . . 8 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅)
123, 11jca 554 . . . . . . 7 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅))
1312adantl 482 . . . . . 6 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅))
14 funun 5890 . . . . . 6 (((Fun 𝐹 ∧ Fun {⟨𝑋, 𝑌⟩}) ∧ (dom 𝐹 ∩ dom {⟨𝑋, 𝑌⟩}) = ∅) → Fun (𝐹 ∪ {⟨𝑋, 𝑌⟩}))
1513, 14syl 17 . . . . 5 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → Fun (𝐹 ∪ {⟨𝑋, 𝑌⟩}))
1615fsuppunbi 8240 . . . 4 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍 ↔ (𝐹 finSupp 𝑍 ∧ {⟨𝑋, 𝑌⟩} finSupp 𝑍)))
17 simpl 473 . . . . . . . . 9 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → (𝑋𝑉𝑌𝑊))
1817anim2i 592 . . . . . . . 8 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → (𝑍 ∈ V ∧ (𝑋𝑉𝑌𝑊)))
1918ancomd 467 . . . . . . 7 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((𝑋𝑉𝑌𝑊) ∧ 𝑍 ∈ V))
20 df-3an 1038 . . . . . . 7 ((𝑋𝑉𝑌𝑊𝑍 ∈ V) ↔ ((𝑋𝑉𝑌𝑊) ∧ 𝑍 ∈ V))
2119, 20sylibr 224 . . . . . 6 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → (𝑋𝑉𝑌𝑊𝑍 ∈ V))
22 snopfsupp 8242 . . . . . 6 ((𝑋𝑉𝑌𝑊𝑍 ∈ V) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)
2321, 22syl 17 . . . . 5 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)
2423biantrud 528 . . . 4 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → (𝐹 finSupp 𝑍 ↔ (𝐹 finSupp 𝑍 ∧ {⟨𝑋, 𝑌⟩} finSupp 𝑍)))
2516, 24bitr4d 271 . . 3 ((𝑍 ∈ V ∧ ((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹))) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
2625ex 450 . 2 (𝑍 ∈ V → (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍)))
27 relfsupp 8221 . . . . 5 Rel finSupp
2827brrelex2i 5119 . . . 4 ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝑍 ∈ V)
2927brrelex2i 5119 . . . 4 (𝐹 finSupp 𝑍𝑍 ∈ V)
3028, 29pm5.21ni 367 . . 3 𝑍 ∈ V → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
3130a1d 25 . 2 𝑍 ∈ V → (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍)))
3226, 31pm2.61i 176 1 (((𝑋𝑉𝑌𝑊) ∧ (Fun 𝐹𝑋 ∉ dom 𝐹)) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}) finSupp 𝑍𝐹 finSupp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wnel 2893  Vcvv 3186  cun 3553  cin 3554  c0 3891  {csn 4148  cop 4154   class class class wbr 4613  dom cdm 5074  Fun wfun 5841   finSupp cfsupp 8219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-fin 7903  df-fsupp 8220
This theorem is referenced by:  islindf4  20096
  Copyright terms: Public domain W3C validator