MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gcdval Structured version   Visualization version   GIF version

Theorem gcdval 15845
Description: The value of the gcd operator. (𝑀 gcd 𝑁) is the greatest common divisor of 𝑀 and 𝑁. If 𝑀 and 𝑁 are both 0, the result is defined conventionally as 0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.)
Assertion
Ref Expression
gcdval ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁

Proof of Theorem gcdval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2825 . . . 4 (𝑥 = 𝑀 → (𝑥 = 0 ↔ 𝑀 = 0))
21anbi1d 631 . . 3 (𝑥 = 𝑀 → ((𝑥 = 0 ∧ 𝑦 = 0) ↔ (𝑀 = 0 ∧ 𝑦 = 0)))
3 breq2 5070 . . . . . 6 (𝑥 = 𝑀 → (𝑛𝑥𝑛𝑀))
43anbi1d 631 . . . . 5 (𝑥 = 𝑀 → ((𝑛𝑥𝑛𝑦) ↔ (𝑛𝑀𝑛𝑦)))
54rabbidv 3480 . . . 4 (𝑥 = 𝑀 → {𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)} = {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑦)})
65supeq1d 8910 . . 3 (𝑥 = 𝑀 → sup({𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)}, ℝ, < ) = sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑦)}, ℝ, < ))
72, 6ifbieq2d 4492 . 2 (𝑥 = 𝑀 → if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)}, ℝ, < )) = if((𝑀 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑦)}, ℝ, < )))
8 eqeq1 2825 . . . 4 (𝑦 = 𝑁 → (𝑦 = 0 ↔ 𝑁 = 0))
98anbi2d 630 . . 3 (𝑦 = 𝑁 → ((𝑀 = 0 ∧ 𝑦 = 0) ↔ (𝑀 = 0 ∧ 𝑁 = 0)))
10 breq2 5070 . . . . . 6 (𝑦 = 𝑁 → (𝑛𝑦𝑛𝑁))
1110anbi2d 630 . . . . 5 (𝑦 = 𝑁 → ((𝑛𝑀𝑛𝑦) ↔ (𝑛𝑀𝑛𝑁)))
1211rabbidv 3480 . . . 4 (𝑦 = 𝑁 → {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑦)} = {𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)})
1312supeq1d 8910 . . 3 (𝑦 = 𝑁 → sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑦)}, ℝ, < ) = sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ))
149, 13ifbieq2d 4492 . 2 (𝑦 = 𝑁 → if((𝑀 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑦)}, ℝ, < )) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
15 df-gcd 15844 . 2 gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)}, ℝ, < )))
16 c0ex 10635 . . 3 0 ∈ V
17 ltso 10721 . . . 4 < Or ℝ
1817supex 8927 . . 3 sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ) ∈ V
1916, 18ifex 4515 . 2 if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )) ∈ V
207, 14, 15, 19ovmpo 7310 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3142  ifcif 4467   class class class wbr 5066  (class class class)co 7156  supcsup 8904  cr 10536  0cc0 10537   < clt 10675  cz 11982  cdvds 15607   gcd cgcd 15843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-mulcl 10599  ax-i2m1 10605  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-gcd 15844
This theorem is referenced by:  gcd0val  15846  gcdn0val  15847  gcdf  15861  gcdcom  15862  dfgcd2  15894  gcdass  15895
  Copyright terms: Public domain W3C validator