HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hcau Structured version   Visualization version   GIF version

Theorem hcau 27213
Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hcau (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
Distinct variable group:   𝑥,𝑦,𝑧,𝐹

Proof of Theorem hcau
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq1 5986 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
2 fveq1 5986 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑧) = (𝐹𝑧))
31, 2oveq12d 6444 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑦) − (𝑓𝑧)) = ((𝐹𝑦) − (𝐹𝑧)))
43fveq2d 5991 . . . . . 6 (𝑓 = 𝐹 → (norm‘((𝑓𝑦) − (𝑓𝑧))) = (norm‘((𝐹𝑦) − (𝐹𝑧))))
54breq1d 4491 . . . . 5 (𝑓 = 𝐹 → ((norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥 ↔ (norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
65rexralbidv 2944 . . . 4 (𝑓 = 𝐹 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
76ralbidv 2873 . . 3 (𝑓 = 𝐹 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
8 df-hcau 27002 . . 3 Cauchy = {𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∣ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥}
97, 8elrab2 3237 . 2 (𝐹 ∈ Cauchy ↔ (𝐹 ∈ ( ℋ ↑𝑚 ℕ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
10 ax-hilex 27028 . . . 4 ℋ ∈ V
11 nnex 10781 . . . 4 ℕ ∈ V
1210, 11elmap 7648 . . 3 (𝐹 ∈ ( ℋ ↑𝑚 ℕ) ↔ 𝐹:ℕ⟶ ℋ)
1312anbi1i 726 . 2 ((𝐹 ∈ ( ℋ ↑𝑚 ℕ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥) ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
149, 13bitri 262 1 (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝐹𝑦) − (𝐹𝑧))) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382   = wceq 1474  wcel 1938  wral 2800  wrex 2801   class class class wbr 4481  wf 5685  cfv 5689  (class class class)co 6426  𝑚 cmap 7620   < clt 9829  cn 10775  cuz 11427  +crp 11574  chil 26948  normcno 26952   cmv 26954  Cauchyccau 26955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-cnex 9747  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-i2m1 9759  ax-1ne0 9760  ax-rrecex 9763  ax-cnre 9764  ax-hilex 27028
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-map 7622  df-nn 10776  df-hcau 27002
This theorem is referenced by:  hcauseq  27214  hcaucvg  27215  seq1hcau  27216  chscllem2  27669
  Copyright terms: Public domain W3C validator