Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem2 Structured version   Visualization version   GIF version

Theorem heiborlem2 33243
Description: Lemma for heibor 33252. Substitutions for the set 𝐺. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heiborlem2.5 𝐴 ∈ V
heiborlem2.6 𝐶 ∈ V
Assertion
Ref Expression
heiborlem2 (𝐴𝐺𝐶 ↔ (𝐶 ∈ ℕ0𝐴 ∈ (𝐹𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾))
Distinct variable groups:   𝑦,𝑛,𝐴   𝑢,𝑛,𝐹,𝑦   𝑣,𝑛,𝐷,𝑢,𝑦   𝐵,𝑛,𝑢,𝑣,𝑦   𝑛,𝐽,𝑢,𝑣,𝑦   𝑈,𝑛,𝑢,𝑣,𝑦   𝐶,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐹(𝑣)   𝐺(𝑦,𝑣,𝑢,𝑛)   𝐾(𝑣,𝑢)

Proof of Theorem heiborlem2
StepHypRef Expression
1 heiborlem2.5 . 2 𝐴 ∈ V
2 heiborlem2.6 . 2 𝐶 ∈ V
3 eleq1 2686 . . 3 (𝑦 = 𝐴 → (𝑦 ∈ (𝐹𝑛) ↔ 𝐴 ∈ (𝐹𝑛)))
4 oveq1 6611 . . . 4 (𝑦 = 𝐴 → (𝑦𝐵𝑛) = (𝐴𝐵𝑛))
54eleq1d 2683 . . 3 (𝑦 = 𝐴 → ((𝑦𝐵𝑛) ∈ 𝐾 ↔ (𝐴𝐵𝑛) ∈ 𝐾))
63, 53anbi23d 1399 . 2 (𝑦 = 𝐴 → ((𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾) ↔ (𝑛 ∈ ℕ0𝐴 ∈ (𝐹𝑛) ∧ (𝐴𝐵𝑛) ∈ 𝐾)))
7 eleq1 2686 . . 3 (𝑛 = 𝐶 → (𝑛 ∈ ℕ0𝐶 ∈ ℕ0))
8 fveq2 6148 . . . 4 (𝑛 = 𝐶 → (𝐹𝑛) = (𝐹𝐶))
98eleq2d 2684 . . 3 (𝑛 = 𝐶 → (𝐴 ∈ (𝐹𝑛) ↔ 𝐴 ∈ (𝐹𝐶)))
10 oveq2 6612 . . . 4 (𝑛 = 𝐶 → (𝐴𝐵𝑛) = (𝐴𝐵𝐶))
1110eleq1d 2683 . . 3 (𝑛 = 𝐶 → ((𝐴𝐵𝑛) ∈ 𝐾 ↔ (𝐴𝐵𝐶) ∈ 𝐾))
127, 9, 113anbi123d 1396 . 2 (𝑛 = 𝐶 → ((𝑛 ∈ ℕ0𝐴 ∈ (𝐹𝑛) ∧ (𝐴𝐵𝑛) ∈ 𝐾) ↔ (𝐶 ∈ ℕ0𝐴 ∈ (𝐹𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾)))
13 heibor.4 . 2 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
141, 2, 6, 12, 13brab 4958 1 (𝐴𝐺𝐶 ↔ (𝐶 ∈ ℕ0𝐴 ∈ (𝐹𝐶) ∧ (𝐴𝐵𝐶) ∈ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  w3a 1036   = wceq 1480  wcel 1987  {cab 2607  wrex 2908  Vcvv 3186  cin 3554  wss 3555  𝒫 cpw 4130   cuni 4402   class class class wbr 4613  {copab 4672  cfv 5847  (class class class)co 6604  Fincfn 7899  0cn0 11236  MetOpencmopn 19655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-iota 5810  df-fv 5855  df-ov 6607
This theorem is referenced by:  heiborlem3  33244  heiborlem5  33246  heiborlem6  33247  heiborlem8  33249  heiborlem10  33251
  Copyright terms: Public domain W3C validator