Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem6 Structured version   Visualization version   GIF version

Theorem heiborlem6 35127
Description: Lemma for heibor 35132. Since the sequence of balls connected by the function 𝑇 ensures that each ball nontrivially intersects with the next (since the empty set has a finite subcover, the intersection of any two successive balls in the sequence is nonempty), and each ball is half the size of the previous one, the distance between the centers is at most 3 / 2 times the size of the larger, and so if we expand each ball by a factor of 3 we get a nested sequence of balls. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem6 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
Distinct variable groups:   𝑥,𝑛,𝑦,𝑘,𝑢,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑥   𝑘,𝑚,𝑣,𝑧,𝐷,𝑛,𝑢,𝑥,𝑦   𝑘,𝑀,𝑚,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑘,𝐽,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝑋,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑘,𝑚)   𝐶(𝑥,𝑧,𝑘)   𝑇(𝑣,𝑢,𝑘)   𝑈(𝑘,𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑘,𝑚)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem6
StepHypRef Expression
1 nnnn0 11898 . . . 4 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 heibor.6 . . . . . . . 8 (𝜑𝐷 ∈ (CMet‘𝑋))
3 cmetmet 23884 . . . . . . . 8 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
42, 3syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
5 metxmet 22939 . . . . . . 7 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
64, 5syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
76adantr 483 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 𝐷 ∈ (∞Met‘𝑋))
8 heibor.7 . . . . . . . . 9 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
9 inss1 4198 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋
10 fss 6520 . . . . . . . . 9 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ (𝒫 𝑋 ∩ Fin) ⊆ 𝒫 𝑋) → 𝐹:ℕ0⟶𝒫 𝑋)
118, 9, 10sylancl 588 . . . . . . . 8 (𝜑𝐹:ℕ0⟶𝒫 𝑋)
12 peano2nn0 11931 . . . . . . . 8 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
13 ffvelrn 6842 . . . . . . . 8 ((𝐹:ℕ0⟶𝒫 𝑋 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ 𝒫 𝑋)
1411, 12, 13syl2an 597 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ 𝒫 𝑋)
1514elpwid 4543 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ⊆ 𝑋)
16 heibor.1 . . . . . . . . 9 𝐽 = (MetOpen‘𝐷)
17 heibor.3 . . . . . . . . 9 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
18 heibor.4 . . . . . . . . 9 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
19 heibor.5 . . . . . . . . 9 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
20 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
21 heibor.9 . . . . . . . . 9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
22 heibor.10 . . . . . . . . 9 (𝜑𝐶𝐺0)
23 heibor.11 . . . . . . . . 9 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
2416, 17, 18, 19, 2, 8, 20, 21, 22, 23heiborlem4 35125 . . . . . . . 8 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ0) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))
2512, 24sylan2 594 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1))𝐺(𝑘 + 1))
26 fvex 6676 . . . . . . . . 9 (𝑆‘(𝑘 + 1)) ∈ V
27 ovex 7182 . . . . . . . . 9 (𝑘 + 1) ∈ V
2816, 17, 18, 26, 27heiborlem2 35123 . . . . . . . 8 ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) ↔ ((𝑘 + 1) ∈ ℕ0 ∧ (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)) ∧ ((𝑆‘(𝑘 + 1))𝐵(𝑘 + 1)) ∈ 𝐾))
2928simp2bi 1141 . . . . . . 7 ((𝑆‘(𝑘 + 1))𝐺(𝑘 + 1) → (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)))
3025, 29syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) ∈ (𝐹‘(𝑘 + 1)))
3115, 30sseldd 3961 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) ∈ 𝑋)
3211ffvelrnda 6844 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ 𝒫 𝑋)
3332elpwid 4543 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ⊆ 𝑋)
3416, 17, 18, 19, 2, 8, 20, 21, 22, 23heiborlem4 35125 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘)𝐺𝑘)
35 fvex 6676 . . . . . . . . 9 (𝑆𝑘) ∈ V
36 vex 3494 . . . . . . . . 9 𝑘 ∈ V
3716, 17, 18, 35, 36heiborlem2 35123 . . . . . . . 8 ((𝑆𝑘)𝐺𝑘 ↔ (𝑘 ∈ ℕ0 ∧ (𝑆𝑘) ∈ (𝐹𝑘) ∧ ((𝑆𝑘)𝐵𝑘) ∈ 𝐾))
3837simp2bi 1141 . . . . . . 7 ((𝑆𝑘)𝐺𝑘 → (𝑆𝑘) ∈ (𝐹𝑘))
3934, 38syl 17 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ (𝐹𝑘))
4033, 39sseldd 3961 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝑆𝑘) ∈ 𝑋)
41 3re 11711 . . . . . 6 3 ∈ ℝ
42 2nn 11704 . . . . . . . . 9 2 ∈ ℕ
43 nnexpcl 13439 . . . . . . . . 9 ((2 ∈ ℕ ∧ (𝑘 + 1) ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ)
4442, 12, 43sylancr 589 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2↑(𝑘 + 1)) ∈ ℕ)
4544nnrpd 12423 . . . . . . 7 (𝑘 ∈ ℕ0 → (2↑(𝑘 + 1)) ∈ ℝ+)
4645adantl 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℝ+)
47 rerpdivcl 12413 . . . . . 6 ((3 ∈ ℝ ∧ (2↑(𝑘 + 1)) ∈ ℝ+) → (3 / (2↑(𝑘 + 1))) ∈ ℝ)
4841, 46, 47sylancr 589 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (3 / (2↑(𝑘 + 1))) ∈ ℝ)
49 nnexpcl 13439 . . . . . . . . 9 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
5042, 49mpan 688 . . . . . . . 8 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℕ)
5150nnrpd 12423 . . . . . . 7 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℝ+)
5251adantl 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℝ+)
53 rerpdivcl 12413 . . . . . 6 ((3 ∈ ℝ ∧ (2↑𝑘) ∈ ℝ+) → (3 / (2↑𝑘)) ∈ ℝ)
5441, 52, 53sylancr 589 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (3 / (2↑𝑘)) ∈ ℝ)
55 oveq1 7156 . . . . . . . . . . . 12 (𝑧 = (𝑆𝑘) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑚))))
56 oveq2 7157 . . . . . . . . . . . . . 14 (𝑚 = 𝑘 → (2↑𝑚) = (2↑𝑘))
5756oveq2d 7165 . . . . . . . . . . . . 13 (𝑚 = 𝑘 → (1 / (2↑𝑚)) = (1 / (2↑𝑘)))
5857oveq2d 7165 . . . . . . . . . . . 12 (𝑚 = 𝑘 → ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑚))) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))))
59 ovex 7182 . . . . . . . . . . . 12 ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∈ V
6055, 58, 19, 59ovmpo 7303 . . . . . . . . . . 11 (((𝑆𝑘) ∈ 𝑋𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐵𝑘) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))))
6140, 60sylancom 590 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐵𝑘) = ((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))))
62 df-br 5060 . . . . . . . . . . . . . . . . 17 ((𝑆𝑘)𝐺𝑘 ↔ ⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺)
63 fveq2 6663 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩))
64 df-ov 7152 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆𝑘)𝑇𝑘) = (𝑇‘⟨(𝑆𝑘), 𝑘⟩)
6563, 64syl6eqr 2873 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝑇𝑥) = ((𝑆𝑘)𝑇𝑘))
6635, 36op2ndd 7693 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (2nd𝑥) = 𝑘)
6766oveq1d 7164 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((2nd𝑥) + 1) = (𝑘 + 1))
6865, 67breq12d 5072 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐺((2nd𝑥) + 1) ↔ ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1)))
69 fveq2 6663 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩))
70 df-ov 7152 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑘)𝐵𝑘) = (𝐵‘⟨(𝑆𝑘), 𝑘⟩)
7169, 70syl6eqr 2873 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (𝐵𝑥) = ((𝑆𝑘)𝐵𝑘))
7265, 67oveq12d 7167 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝑇𝑥)𝐵((2nd𝑥) + 1)) = (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)))
7371, 72ineq12d 4183 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) = (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))))
7473eleq1d 2896 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))
7568, 74anbi12d 632 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨(𝑆𝑘), 𝑘⟩ → (((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7675rspccv 3617 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7721, 76syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (⟨(𝑆𝑘), 𝑘⟩ ∈ 𝐺 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7862, 77syl5bi 244 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑆𝑘)𝐺𝑘 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
7978adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐺𝑘 → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)))
8034, 79mpd 15 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ∧ (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾))
8180simpld 497 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1))
82 ovex 7182 . . . . . . . . . . . . . . 15 ((𝑆𝑘)𝑇𝑘) ∈ V
8316, 17, 18, 82, 27heiborlem2 35123 . . . . . . . . . . . . . 14 (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) ↔ ((𝑘 + 1) ∈ ℕ0 ∧ ((𝑆𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)) ∧ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)) ∈ 𝐾))
8483simp2bi 1141 . . . . . . . . . . . . 13 (((𝑆𝑘)𝑇𝑘)𝐺(𝑘 + 1) → ((𝑆𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)))
8581, 84syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝑇𝑘) ∈ (𝐹‘(𝑘 + 1)))
8615, 85sseldd 3961 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝑇𝑘) ∈ 𝑋)
8712adantl 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
88 oveq1 7156 . . . . . . . . . . . 12 (𝑧 = ((𝑆𝑘)𝑇𝑘) → (𝑧(ball‘𝐷)(1 / (2↑𝑚))) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑𝑚))))
89 oveq2 7157 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (2↑𝑚) = (2↑(𝑘 + 1)))
9089oveq2d 7165 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → (1 / (2↑𝑚)) = (1 / (2↑(𝑘 + 1))))
9190oveq2d 7165 . . . . . . . . . . . 12 (𝑚 = (𝑘 + 1) → (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑𝑚))) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))
92 ovex 7182 . . . . . . . . . . . 12 (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))) ∈ V
9388, 91, 19, 92ovmpo 7303 . . . . . . . . . . 11 ((((𝑆𝑘)𝑇𝑘) ∈ 𝑋 ∧ (𝑘 + 1) ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))
9486, 87, 93syl2anc 586 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1)) = (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1)))))
9561, 94ineq12d 4183 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) = (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))))
9680simprd 498 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾)
97 0elpw 5249 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 𝑈
98 0fin 8739 . . . . . . . . . . . . 13 ∅ ∈ Fin
99 elin 4162 . . . . . . . . . . . . 13 (∅ ∈ (𝒫 𝑈 ∩ Fin) ↔ (∅ ∈ 𝒫 𝑈 ∧ ∅ ∈ Fin))
10097, 98, 99mpbir2an 709 . . . . . . . . . . . 12 ∅ ∈ (𝒫 𝑈 ∩ Fin)
101 0ss 4343 . . . . . . . . . . . 12 ∅ ⊆
102 unieq 4842 . . . . . . . . . . . . . 14 (𝑣 = ∅ → 𝑣 = ∅)
103102sseq2d 3992 . . . . . . . . . . . . 13 (𝑣 = ∅ → (∅ ⊆ 𝑣 ↔ ∅ ⊆ ∅))
104103rspcev 3620 . . . . . . . . . . . 12 ((∅ ∈ (𝒫 𝑈 ∩ Fin) ∧ ∅ ⊆ ∅) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣)
105100, 101, 104mp2an 690 . . . . . . . . . . 11 𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣
106 0ex 5204 . . . . . . . . . . . . 13 ∅ ∈ V
107 sseq1 3985 . . . . . . . . . . . . . . 15 (𝑢 = ∅ → (𝑢 𝑣 ↔ ∅ ⊆ 𝑣))
108107rexbidv 3296 . . . . . . . . . . . . . 14 (𝑢 = ∅ → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣))
109108notbid 320 . . . . . . . . . . . . 13 (𝑢 = ∅ → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣))
110106, 109, 17elab2 3666 . . . . . . . . . . . 12 (∅ ∈ 𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣)
111110con2bii 360 . . . . . . . . . . 11 (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)∅ ⊆ 𝑣 ↔ ¬ ∅ ∈ 𝐾)
112105, 111mpbi 232 . . . . . . . . . 10 ¬ ∅ ∈ 𝐾
113 nelne2 3114 . . . . . . . . . 10 (((((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ∈ 𝐾 ∧ ¬ ∅ ∈ 𝐾) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ≠ ∅)
11496, 112, 113sylancl 588 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝐵𝑘) ∩ (((𝑆𝑘)𝑇𝑘)𝐵(𝑘 + 1))) ≠ ∅)
11595, 114eqnetrrd 3083 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) ≠ ∅)
11651rpreccld 12435 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 / (2↑𝑘)) ∈ ℝ+)
117116adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑𝑘)) ∈ ℝ+)
118117rpred 12425 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑𝑘)) ∈ ℝ)
11945rpreccld 12435 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 / (2↑(𝑘 + 1))) ∈ ℝ+)
120119adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑(𝑘 + 1))) ∈ ℝ+)
121120rpred 12425 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑(𝑘 + 1))) ∈ ℝ)
122 rexadd 12619 . . . . . . . . . . . 12 (((1 / (2↑𝑘)) ∈ ℝ ∧ (1 / (2↑(𝑘 + 1))) ∈ ℝ) → ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
123118, 121, 122syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
124123breq1d 5069 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ↔ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘))))
125117rpxrd 12426 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑𝑘)) ∈ ℝ*)
126120rpxrd 12426 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (1 / (2↑(𝑘 + 1))) ∈ ℝ*)
127 bldisj 23003 . . . . . . . . . . . . 13 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (1 / (2↑(𝑘 + 1))) ∈ ℝ* ∧ ((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅)
1281273exp2 1349 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) → ((1 / (2↑𝑘)) ∈ ℝ* → ((1 / (2↑(𝑘 + 1))) ∈ ℝ* → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))))
129128imp32 421 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) ∧ ((1 / (2↑𝑘)) ∈ ℝ* ∧ (1 / (2↑(𝑘 + 1))) ∈ ℝ*)) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))
1307, 40, 86, 125, 126, 129syl32anc 1373 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) +𝑒 (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))
131124, 130sylbird 262 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → (((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) = ∅))
132131necon3ad 3028 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → ((((𝑆𝑘)(ball‘𝐷)(1 / (2↑𝑘))) ∩ (((𝑆𝑘)𝑇𝑘)(ball‘𝐷)(1 / (2↑(𝑘 + 1))))) ≠ ∅ → ¬ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘))))
133115, 132mpd 15 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ¬ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
134117, 120rpaddcld 12440 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ∈ ℝ+)
135134rpred 12425 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ∈ ℝ)
1364adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → 𝐷 ∈ (Met‘𝑋))
137 metcl 22937 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ (𝑆𝑘) ∈ 𝑋 ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ∈ ℝ)
138136, 40, 86, 137syl3anc 1366 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ∈ ℝ)
139135, 138letrid 10785 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ∨ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))))
140139ord 860 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (¬ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) ≤ ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1))))))
141133, 140mpd 15 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)) ≤ ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
142 seqp1 13381 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘0) → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
143 nn0uz 12274 . . . . . . . . . . . 12 0 = (ℤ‘0)
144142, 143eleq2s 2930 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1)) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
14523fveq1i 6664 . . . . . . . . . . 11 (𝑆‘(𝑘 + 1)) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘(𝑘 + 1))
14623fveq1i 6664 . . . . . . . . . . . 12 (𝑆𝑘) = (seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)
147146oveq1i 7159 . . . . . . . . . . 11 ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))‘𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)))
148144, 145, 1473eqtr4g 2880 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))))
149 eqid 2820 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))
150 eqeq1 2824 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (𝑚 = 0 ↔ (𝑘 + 1) = 0))
151 oveq1 7156 . . . . . . . . . . . . . 14 (𝑚 = (𝑘 + 1) → (𝑚 − 1) = ((𝑘 + 1) − 1))
152150, 151ifbieq2d 4485 . . . . . . . . . . . . 13 (𝑚 = (𝑘 + 1) → if(𝑚 = 0, 𝐶, (𝑚 − 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
153 nn0p1nn 11930 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
154 nnne0 11665 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ ℕ → (𝑘 + 1) ≠ 0)
155154neneqd 3020 . . . . . . . . . . . . . . . 16 ((𝑘 + 1) ∈ ℕ → ¬ (𝑘 + 1) = 0)
156153, 155syl 17 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ¬ (𝑘 + 1) = 0)
157156iffalsed 4471 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) = ((𝑘 + 1) − 1))
158 ovex 7182 . . . . . . . . . . . . . 14 ((𝑘 + 1) − 1) ∈ V
159157, 158eqeltrdi 2920 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)) ∈ V)
160149, 152, 12, 159fvmptd3 6784 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = if((𝑘 + 1) = 0, 𝐶, ((𝑘 + 1) − 1)))
161 nn0cn 11901 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
162 ax-1cn 10588 . . . . . . . . . . . . 13 1 ∈ ℂ
163 pncan 10885 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
164161, 162, 163sylancl 588 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑘 + 1) − 1) = 𝑘)
165160, 157, 1643eqtrd 2859 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1)) = 𝑘)
166165oveq2d 7165 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((𝑆𝑘)𝑇((𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1)))‘(𝑘 + 1))) = ((𝑆𝑘)𝑇𝑘))
167148, 166eqtrd 2855 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇𝑘))
168167adantl 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (𝑆‘(𝑘 + 1)) = ((𝑆𝑘)𝑇𝑘))
169168oveq1d 7164 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) = (((𝑆𝑘)𝑇𝑘)𝐷(𝑆𝑘)))
170 metsym 22955 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ ((𝑆𝑘)𝑇𝑘) ∈ 𝑋 ∧ (𝑆𝑘) ∈ 𝑋) → (((𝑆𝑘)𝑇𝑘)𝐷(𝑆𝑘)) = ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
171136, 86, 40, 170syl3anc 1366 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (((𝑆𝑘)𝑇𝑘)𝐷(𝑆𝑘)) = ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
172169, 171eqtrd 2855 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) = ((𝑆𝑘)𝐷((𝑆𝑘)𝑇𝑘)))
173 3cn 11712 . . . . . . . . . . . . 13 3 ∈ ℂ
1741732timesi 11769 . . . . . . . . . . . 12 (2 · 3) = (3 + 3)
175174oveq1i 7159 . . . . . . . . . . 11 ((2 · 3) − 3) = ((3 + 3) − 3)
176173, 173pncan3oi 10895 . . . . . . . . . . 11 ((3 + 3) − 3) = 3
177 df-3 11695 . . . . . . . . . . 11 3 = (2 + 1)
178175, 176, 1773eqtri 2847 . . . . . . . . . 10 ((2 · 3) − 3) = (2 + 1)
179178oveq1i 7159 . . . . . . . . 9 (((2 · 3) − 3) / (2↑(𝑘 + 1))) = ((2 + 1) / (2↑(𝑘 + 1)))
180 rpcn 12393 . . . . . . . . . . 11 ((2↑(𝑘 + 1)) ∈ ℝ+ → (2↑(𝑘 + 1)) ∈ ℂ)
181 rpne0 12399 . . . . . . . . . . 11 ((2↑(𝑘 + 1)) ∈ ℝ+ → (2↑(𝑘 + 1)) ≠ 0)
182 2cn 11706 . . . . . . . . . . . . 13 2 ∈ ℂ
183182, 173mulcli 10641 . . . . . . . . . . . 12 (2 · 3) ∈ ℂ
184 divsubdir 11327 . . . . . . . . . . . 12 (((2 · 3) ∈ ℂ ∧ 3 ∈ ℂ ∧ ((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0)) → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
185183, 173, 184mp3an12 1446 . . . . . . . . . . 11 (((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0) → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
186180, 181, 185syl2anc 586 . . . . . . . . . 10 ((2↑(𝑘 + 1)) ∈ ℝ+ → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
18745, 186syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (((2 · 3) − 3) / (2↑(𝑘 + 1))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
188 divdir 11316 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0)) → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
189182, 162, 188mp3an12 1446 . . . . . . . . . . 11 (((2↑(𝑘 + 1)) ∈ ℂ ∧ (2↑(𝑘 + 1)) ≠ 0) → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
190180, 181, 189syl2anc 586 . . . . . . . . . 10 ((2↑(𝑘 + 1)) ∈ ℝ+ → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
19145, 190syl 17 . . . . . . . . 9 (𝑘 ∈ ℕ0 → ((2 + 1) / (2↑(𝑘 + 1))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
192179, 187, 1913eqtr3a 2879 . . . . . . . 8 (𝑘 ∈ ℕ0 → (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
193 rpcn 12393 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ)
194 rpne0 12399 . . . . . . . . . . . 12 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0)
195 2cnne0 11841 . . . . . . . . . . . . 13 (2 ∈ ℂ ∧ 2 ≠ 0)
196 divcan5 11335 . . . . . . . . . . . . 13 ((3 ∈ ℂ ∧ ((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
197173, 195, 196mp3an13 1447 . . . . . . . . . . . 12 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
198193, 194, 197syl2anc 586 . . . . . . . . . . 11 ((2↑𝑘) ∈ ℝ+ → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
19951, 198syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 3) / (2 · (2↑𝑘))) = (3 / (2↑𝑘)))
20051, 193syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (2↑𝑘) ∈ ℂ)
201 mulcom 10616 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ) → (2 · (2↑𝑘)) = ((2↑𝑘) · 2))
202182, 200, 201sylancr 589 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (2 · (2↑𝑘)) = ((2↑𝑘) · 2))
203 expp1 13433 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
204182, 203mpan 688 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (2↑(𝑘 + 1)) = ((2↑𝑘) · 2))
205202, 204eqtr4d 2858 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (2 · (2↑𝑘)) = (2↑(𝑘 + 1)))
206205oveq2d 7165 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 3) / (2 · (2↑𝑘))) = ((2 · 3) / (2↑(𝑘 + 1))))
207199, 206eqtr3d 2857 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (3 / (2↑𝑘)) = ((2 · 3) / (2↑(𝑘 + 1))))
208207oveq1d 7164 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))) = (((2 · 3) / (2↑(𝑘 + 1))) − (3 / (2↑(𝑘 + 1)))))
209 divcan5 11335 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ ((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
210162, 195, 209mp3an13 1447 . . . . . . . . . . . 12 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
211193, 194, 210syl2anc 586 . . . . . . . . . . 11 ((2↑𝑘) ∈ ℝ+ → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
21251, 211syl 17 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 1) / (2 · (2↑𝑘))) = (1 / (2↑𝑘)))
213 2t1e2 11794 . . . . . . . . . . . 12 (2 · 1) = 2
214213a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (2 · 1) = 2)
215214, 205oveq12d 7167 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → ((2 · 1) / (2 · (2↑𝑘))) = (2 / (2↑(𝑘 + 1))))
216212, 215eqtr3d 2857 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (1 / (2↑𝑘)) = (2 / (2↑(𝑘 + 1))))
217216oveq1d 7164 . . . . . . . 8 (𝑘 ∈ ℕ0 → ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))) = ((2 / (2↑(𝑘 + 1))) + (1 / (2↑(𝑘 + 1)))))
218192, 208, 2173eqtr4d 2865 . . . . . . 7 (𝑘 ∈ ℕ0 → ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
219218adantl 484 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))) = ((1 / (2↑𝑘)) + (1 / (2↑(𝑘 + 1)))))
220141, 172, 2193brtr4d 5091 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) ≤ ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))))
221 blss2 23009 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑆‘(𝑘 + 1)) ∈ 𝑋 ∧ (𝑆𝑘) ∈ 𝑋) ∧ ((3 / (2↑(𝑘 + 1))) ∈ ℝ ∧ (3 / (2↑𝑘)) ∈ ℝ ∧ ((𝑆‘(𝑘 + 1))𝐷(𝑆𝑘)) ≤ ((3 / (2↑𝑘)) − (3 / (2↑(𝑘 + 1)))))) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
2227, 31, 40, 48, 54, 220, 221syl33anc 1380 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
2231, 222sylan2 594 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) ⊆ ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
224 peano2nn 11643 . . . . . . 7 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
225 fveq2 6663 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (𝑆𝑛) = (𝑆‘(𝑘 + 1)))
226 oveq2 7157 . . . . . . . . . 10 (𝑛 = (𝑘 + 1) → (2↑𝑛) = (2↑(𝑘 + 1)))
227226oveq2d 7165 . . . . . . . . 9 (𝑛 = (𝑘 + 1) → (3 / (2↑𝑛)) = (3 / (2↑(𝑘 + 1))))
228225, 227opeq12d 4804 . . . . . . . 8 (𝑛 = (𝑘 + 1) → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
229 heibor.12 . . . . . . . 8 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
230 opex 5349 . . . . . . . 8 ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩ ∈ V
231228, 229, 230fvmpt 6761 . . . . . . 7 ((𝑘 + 1) ∈ ℕ → (𝑀‘(𝑘 + 1)) = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
232224, 231syl 17 . . . . . 6 (𝑘 ∈ ℕ → (𝑀‘(𝑘 + 1)) = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
233232adantl 484 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝑀‘(𝑘 + 1)) = ⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
234233fveq2d 6667 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) = ((ball‘𝐷)‘⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩))
235 df-ov 7152 . . . 4 ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))) = ((ball‘𝐷)‘⟨(𝑆‘(𝑘 + 1)), (3 / (2↑(𝑘 + 1)))⟩)
236234, 235syl6eqr 2873 . . 3 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) = ((𝑆‘(𝑘 + 1))(ball‘𝐷)(3 / (2↑(𝑘 + 1)))))
237 fveq2 6663 . . . . . . . 8 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
238 oveq2 7157 . . . . . . . . 9 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
239238oveq2d 7165 . . . . . . . 8 (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘)))
240237, 239opeq12d 4804 . . . . . . 7 (𝑛 = 𝑘 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
241 opex 5349 . . . . . . 7 ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩ ∈ V
242240, 229, 241fvmpt 6761 . . . . . 6 (𝑘 ∈ ℕ → (𝑀𝑘) = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
243242fveq2d 6667 . . . . 5 (𝑘 ∈ ℕ → ((ball‘𝐷)‘(𝑀𝑘)) = ((ball‘𝐷)‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩))
244 df-ov 7152 . . . . 5 ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))) = ((ball‘𝐷)‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
245243, 244syl6eqr 2873 . . . 4 (𝑘 ∈ ℕ → ((ball‘𝐷)‘(𝑀𝑘)) = ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
246245adantl 484 . . 3 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀𝑘)) = ((𝑆𝑘)(ball‘𝐷)(3 / (2↑𝑘))))
247223, 236, 2463sstr4d 4007 . 2 ((𝜑𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
248247ralrimiva 3181 1 (𝜑 → ∀𝑘 ∈ ℕ ((ball‘𝐷)‘(𝑀‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝑀𝑘)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  {cab 2798  wne 3015  wral 3137  wrex 3138  Vcvv 3491  cin 3928  wss 3929  c0 4284  ifcif 4460  𝒫 cpw 4532  cop 4566   cuni 4831   ciun 4912   class class class wbr 5059  {copab 5121  cmpt 5139  wf 6344  cfv 6348  (class class class)co 7149  cmpo 7151  2nd c2nd 7681  Fincfn 8502  cc 10528  cr 10529  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  *cxr 10667  cle 10669  cmin 10863   / cdiv 11290  cn 11631  2c2 11686  3c3 11687  0cn0 11891  cuz 12237  +crp 12383   +𝑒 cxad 12499  seqcseq 13366  cexp 13426  ∞Metcxmet 20525  Metcmet 20526  ballcbl 20527  MetOpencmopn 20530  CMetccmet 23852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-seq 13367  df-exp 13427  df-psmet 20532  df-xmet 20533  df-met 20534  df-bl 20535  df-cmet 23855
This theorem is referenced by:  heiborlem8  35129  heiborlem9  35130
  Copyright terms: Public domain W3C validator