Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem10 Structured version   Visualization version   GIF version

Theorem heiborlem10 33749
Description: Lemma for heibor 33750. The last remaining piece of the proof is to find an element 𝐶 such that 𝐶𝐺0, i.e. 𝐶 is an element of (𝐹‘0) that has no finite subcover, which is true by heiborlem1 33740, since (𝐹‘0) is a finite cover of 𝑋, which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of 𝑈 that covers 𝑋, i.e. 𝑋 is compact. (Contributed by Jeff Madsen, 22-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
Assertion
Ref Expression
heiborlem10 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣)
Distinct variable groups:   𝑦,𝑛,𝑢,𝐹   𝑚,𝑛,𝑢,𝑣,𝑦,𝑧,𝐷   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝜑,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem10
Dummy variables 𝑡 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.7 . . . . . . . 8 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
2 0nn0 11345 . . . . . . . 8 0 ∈ ℕ0
3 inss2 3867 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ Fin
4 ffvelrn 6397 . . . . . . . . 9 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ (𝒫 𝑋 ∩ Fin))
53, 4sseldi 3634 . . . . . . . 8 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ Fin)
61, 2, 5sylancl 695 . . . . . . 7 (𝜑 → (𝐹‘0) ∈ Fin)
7 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
8 fveq2 6229 . . . . . . . . . . . 12 (𝑛 = 0 → (𝐹𝑛) = (𝐹‘0))
9 oveq2 6698 . . . . . . . . . . . 12 (𝑛 = 0 → (𝑦𝐵𝑛) = (𝑦𝐵0))
108, 9iuneq12d 4578 . . . . . . . . . . 11 (𝑛 = 0 → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
1110eqeq2d 2661 . . . . . . . . . 10 (𝑛 = 0 → (𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ↔ 𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0)))
1211rspccva 3339 . . . . . . . . 9 ((∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ∧ 0 ∈ ℕ0) → 𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
137, 2, 12sylancl 695 . . . . . . . 8 (𝜑𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
14 eqimss 3690 . . . . . . . 8 (𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0) → 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
1513, 14syl 17 . . . . . . 7 (𝜑𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
16 heibor.1 . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
17 heibor.3 . . . . . . . . . 10 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
18 ovex 6718 . . . . . . . . . 10 (𝑦𝐵0) ∈ V
1916, 17, 18heiborlem1 33740 . . . . . . . . 9 (((𝐹‘0) ∈ Fin ∧ 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∧ 𝑋𝐾) → ∃𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∈ 𝐾)
20 oveq1 6697 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝐵0) = (𝑥𝐵0))
2120eleq1d 2715 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑦𝐵0) ∈ 𝐾 ↔ (𝑥𝐵0) ∈ 𝐾))
2221cbvrexv 3202 . . . . . . . . 9 (∃𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∈ 𝐾 ↔ ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾)
2319, 22sylib 208 . . . . . . . 8 (((𝐹‘0) ∈ Fin ∧ 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∧ 𝑋𝐾) → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾)
24233expia 1286 . . . . . . 7 (((𝐹‘0) ∈ Fin ∧ 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0)) → (𝑋𝐾 → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾))
256, 15, 24syl2anc 694 . . . . . 6 (𝜑 → (𝑋𝐾 → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾))
2625adantr 480 . . . . 5 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑋𝐾 → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾))
27 heibor.4 . . . . . . . . . 10 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
28 vex 3234 . . . . . . . . . 10 𝑥 ∈ V
29 c0ex 10072 . . . . . . . . . 10 0 ∈ V
3016, 17, 27, 28, 29heiborlem2 33741 . . . . . . . . 9 (𝑥𝐺0 ↔ (0 ∈ ℕ0𝑥 ∈ (𝐹‘0) ∧ (𝑥𝐵0) ∈ 𝐾))
31 heibor.5 . . . . . . . . . . . 12 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
32 heibor.6 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (CMet‘𝑋))
3316, 17, 27, 31, 32, 1, 7heiborlem3 33742 . . . . . . . . . . 11 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
3433ad2antrr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
3532ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝐷 ∈ (CMet‘𝑋))
361ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
377ad2antrr 762 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
38 simprr 811 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
39 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → (𝑔𝑥) = (𝑔𝑡))
40 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → (2nd𝑥) = (2nd𝑡))
4140oveq1d 6705 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → ((2nd𝑥) + 1) = ((2nd𝑡) + 1))
4239, 41breq12d 4698 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → ((𝑔𝑥)𝐺((2nd𝑥) + 1) ↔ (𝑔𝑡)𝐺((2nd𝑡) + 1)))
43 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → (𝐵𝑥) = (𝐵𝑡))
4439, 41oveq12d 6708 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → ((𝑔𝑥)𝐵((2nd𝑥) + 1)) = ((𝑔𝑡)𝐵((2nd𝑡) + 1)))
4543, 44ineq12d 3848 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) = ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))))
4645eleq1d 2715 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾))
4742, 46anbi12d 747 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ((𝑔𝑡)𝐺((2nd𝑡) + 1) ∧ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾)))
4847cbvralv 3201 . . . . . . . . . . . . . 14 (∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ∀𝑡𝐺 ((𝑔𝑡)𝐺((2nd𝑡) + 1) ∧ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾))
4938, 48sylib 208 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ∀𝑡𝐺 ((𝑔𝑡)𝐺((2nd𝑡) + 1) ∧ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾))
50 simprl 809 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝑥𝐺0)
51 eqeq1 2655 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑚 → (𝑔 = 0 ↔ 𝑚 = 0))
52 oveq1 6697 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑚 → (𝑔 − 1) = (𝑚 − 1))
5351, 52ifbieq2d 4144 . . . . . . . . . . . . . . 15 (𝑔 = 𝑚 → if(𝑔 = 0, 𝑥, (𝑔 − 1)) = if(𝑚 = 0, 𝑥, (𝑚 − 1)))
5453cbvmptv 4783 . . . . . . . . . . . . . 14 (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1)))
55 seqeq3 12846 . . . . . . . . . . . . . 14 ((𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1))) → seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1)))) = seq0(𝑔, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1)))))
5654, 55ax-mp 5 . . . . . . . . . . . . 13 seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1)))) = seq0(𝑔, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1))))
57 eqid 2651 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ ⟨(seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))))‘𝑛), (3 / (2↑𝑛))⟩) = (𝑛 ∈ ℕ ↦ ⟨(seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))))‘𝑛), (3 / (2↑𝑛))⟩)
58 simplrl 817 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝑈𝐽)
59 cmetmet 23130 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
60 metxmet 22186 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
6116mopnuni 22293 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
6232, 59, 60, 614syl 19 . . . . . . . . . . . . . . . 16 (𝜑𝑋 = 𝐽)
6362adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝑋 = 𝐽)
64 simprr 811 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝐽 = 𝑈)
6563, 64eqtr2d 2686 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝑈 = 𝑋)
6665adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝑈 = 𝑋)
6716, 17, 27, 31, 35, 36, 37, 49, 50, 56, 57, 58, 66heiborlem9 33748 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ¬ 𝑋𝐾)
6867expr 642 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → (∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ¬ 𝑋𝐾))
6968exlimdv 1901 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → (∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ¬ 𝑋𝐾))
7034, 69mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → ¬ 𝑋𝐾)
7130, 70sylan2br 492 . . . . . . . 8 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (0 ∈ ℕ0𝑥 ∈ (𝐹‘0) ∧ (𝑥𝐵0) ∈ 𝐾)) → ¬ 𝑋𝐾)
72713exp2 1307 . . . . . . 7 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (0 ∈ ℕ0 → (𝑥 ∈ (𝐹‘0) → ((𝑥𝐵0) ∈ 𝐾 → ¬ 𝑋𝐾))))
732, 72mpi 20 . . . . . 6 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑥 ∈ (𝐹‘0) → ((𝑥𝐵0) ∈ 𝐾 → ¬ 𝑋𝐾)))
7473rexlimdv 3059 . . . . 5 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾 → ¬ 𝑋𝐾))
7526, 74syld 47 . . . 4 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑋𝐾 → ¬ 𝑋𝐾))
7675pm2.01d 181 . . 3 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ¬ 𝑋𝐾)
77 elfvdm 6258 . . . . . 6 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet)
78 sseq1 3659 . . . . . . . . 9 (𝑢 = 𝑋 → (𝑢 𝑣𝑋 𝑣))
7978rexbidv 3081 . . . . . . . 8 (𝑢 = 𝑋 → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8079notbid 307 . . . . . . 7 (𝑢 = 𝑋 → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8180, 17elab2g 3385 . . . . . 6 (𝑋 ∈ dom CMet → (𝑋𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8232, 77, 813syl 18 . . . . 5 (𝜑 → (𝑋𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8382adantr 480 . . . 4 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑋𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8483con2bid 343 . . 3 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣 ↔ ¬ 𝑋𝐾))
8576, 84mpbird 247 . 2 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣)
8662ad2antrr 762 . . . . 5 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑋 = 𝐽)
8786sseq1d 3665 . . . 4 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑋 𝑣 𝐽 𝑣))
88 inss1 3866 . . . . . . . . 9 (𝒫 𝑈 ∩ Fin) ⊆ 𝒫 𝑈
8988sseli 3632 . . . . . . . 8 (𝑣 ∈ (𝒫 𝑈 ∩ Fin) → 𝑣 ∈ 𝒫 𝑈)
9089elpwid 4203 . . . . . . 7 (𝑣 ∈ (𝒫 𝑈 ∩ Fin) → 𝑣𝑈)
91 simprl 809 . . . . . . 7 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝑈𝐽)
92 sstr 3644 . . . . . . . 8 ((𝑣𝑈𝑈𝐽) → 𝑣𝐽)
9392unissd 4494 . . . . . . 7 ((𝑣𝑈𝑈𝐽) → 𝑣 𝐽)
9490, 91, 93syl2anr 494 . . . . . 6 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑣 𝐽)
9594biantrud 527 . . . . 5 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → ( 𝐽 𝑣 ↔ ( 𝐽 𝑣 𝑣 𝐽)))
96 eqss 3651 . . . . 5 ( 𝐽 = 𝑣 ↔ ( 𝐽 𝑣 𝑣 𝐽))
9795, 96syl6bbr 278 . . . 4 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → ( 𝐽 𝑣 𝐽 = 𝑣))
9887, 97bitrd 268 . . 3 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑋 𝑣 𝐽 = 𝑣))
9998rexbidva 3078 . 2 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣))
10085, 99mpbid 222 1 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wral 2941  wrex 2942  cin 3606  wss 3607  ifcif 4119  𝒫 cpw 4191  cop 4216   cuni 4468   ciun 4552   class class class wbr 4685  {copab 4745  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  2nd c2nd 7209  Fincfn 7997  0cc0 9974  1c1 9975   + caddc 9977  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  3c3 11109  0cn0 11330  seqcseq 12841  cexp 12900  ∞Metcxmt 19779  Metcme 19780  ballcbl 19781  MetOpencmopn 19784  CMetcms 23098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ico 12219  df-icc 12220  df-fl 12633  df-seq 12842  df-exp 12901  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-top 20747  df-topon 20764  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lm 21081  df-haus 21167  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-cfil 23099  df-cau 23100  df-cmet 23101
This theorem is referenced by:  heibor  33750
  Copyright terms: Public domain W3C validator