MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hpgne1 Structured version   Visualization version   GIF version

Theorem hpgne1 26547
Description: Points on the open half plane cannot lie on its border. (Contributed by Thierry Arnoux, 4-Mar-2020.)
Hypotheses
Ref Expression
ishpg.p 𝑃 = (Base‘𝐺)
ishpg.i 𝐼 = (Itv‘𝐺)
ishpg.l 𝐿 = (LineG‘𝐺)
ishpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
ishpg.g (𝜑𝐺 ∈ TarskiG)
ishpg.d (𝜑𝐷 ∈ ran 𝐿)
hpgbr.a (𝜑𝐴𝑃)
hpgbr.b (𝜑𝐵𝑃)
hpgne1.1 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
Assertion
Ref Expression
hpgne1 (𝜑 → ¬ 𝐴𝐷)
Distinct variable groups:   𝑡,𝐴   𝑡,𝐵   𝐷,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝑡,𝐿   𝑂,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐿(𝑎,𝑏)

Proof of Theorem hpgne1
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 ishpg.p . . 3 𝑃 = (Base‘𝐺)
2 eqid 2821 . . 3 (dist‘𝐺) = (dist‘𝐺)
3 ishpg.i . . 3 𝐼 = (Itv‘𝐺)
4 ishpg.o . . 3 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
5 ishpg.l . . 3 𝐿 = (LineG‘𝐺)
6 ishpg.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
76ad2antrr 724 . . 3 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐷 ∈ ran 𝐿)
8 ishpg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
98ad2antrr 724 . . 3 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐺 ∈ TarskiG)
10 hpgbr.a . . . 4 (𝜑𝐴𝑃)
1110ad2antrr 724 . . 3 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐴𝑃)
12 simplr 767 . . 3 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝑐𝑃)
13 simprl 769 . . 3 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → 𝐴𝑂𝑐)
141, 2, 3, 4, 5, 7, 9, 11, 12, 13oppne1 26527 . 2 (((𝜑𝑐𝑃) ∧ (𝐴𝑂𝑐𝐵𝑂𝑐)) → ¬ 𝐴𝐷)
15 hpgne1.1 . . 3 (𝜑𝐴((hpG‘𝐺)‘𝐷)𝐵)
16 hpgbr.b . . . 4 (𝜑𝐵𝑃)
171, 3, 5, 4, 8, 6, 10, 16hpgbr 26546 . . 3 (𝜑 → (𝐴((hpG‘𝐺)‘𝐷)𝐵 ↔ ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐)))
1815, 17mpbid 234 . 2 (𝜑 → ∃𝑐𝑃 (𝐴𝑂𝑐𝐵𝑂𝑐))
1914, 18r19.29a 3289 1 (𝜑 → ¬ 𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3139  cdif 3933   class class class wbr 5066  {copab 5128  ran crn 5556  cfv 6355  (class class class)co 7156  Basecbs 16483  distcds 16574  TarskiGcstrkg 26216  Itvcitv 26222  LineGclng 26223  hpGchpg 26543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-hpg 26544
This theorem is referenced by:  colhp  26556  trgcopyeulem  26591
  Copyright terms: Public domain W3C validator