HomeHome Metamath Proof Explorer
Theorem List (p. 266 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27759)
  Hilbert Space Explorer  Hilbert Space Explorer
(27760-29284)
  Users' Mathboxes  Users' Mathboxes
(29285-42322)
 

Theorem List for Metamath Proof Explorer - 26501-26600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremwlkprop 26501* Properties of a walk. (Contributed by AV, 5-Nov-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
 
Theoremwlkv 26502 The classes involved in a walk are sets. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 3-Feb-2021.)
(𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
 
Theoremiswlkg 26503* Generalisation of iswlk 26500: Conditions for two classes to represent a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝐺𝑊 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
 
Theoremwlkf 26504 The mapping enumerating the (indices of the) edges of a walk is a word over the indices of the edges of the graph. (Contributed by AV, 5-Apr-2021.)
𝐼 = (iEdg‘𝐺)       (𝐹(Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
 
Theoremwlkcl 26505 A walk has length #(𝐹), which is an integer. Formerly proven for an Eulerian path, see eupthcl 27063. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.)
(𝐹(Walks‘𝐺)𝑃 → (#‘𝐹) ∈ ℕ0)
 
Theoremwlkp 26506 The mapping enumerating the vertices of a walk is a function. (Contributed by AV, 5-Apr-2021.)
𝑉 = (Vtx‘𝐺)       (𝐹(Walks‘𝐺)𝑃𝑃:(0...(#‘𝐹))⟶𝑉)
 
Theoremwlkpwrd 26507 The sequence of vertices of a walk is a word over the set of vertices. (Contributed by AV, 27-Jan-2021.)
𝑉 = (Vtx‘𝐺)       (𝐹(Walks‘𝐺)𝑃𝑃 ∈ Word 𝑉)
 
Theoremwlklenvp1 26508 The number of vertices of a walk (in an undirected graph) is the number of its edges plus 1. (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 1-May-2021.)
(𝐹(Walks‘𝐺)𝑃 → (#‘𝑃) = ((#‘𝐹) + 1))
 
Theoremwksv 26509* The class of walks is a set. (Contributed by AV, 15-Jan-2021.)
{⟨𝑓, 𝑝⟩ ∣ 𝑓(Walks‘𝐺)𝑝} ∈ V
 
Theoremwlkn0 26510 The sequence of vertices of a walk cannot be empty, i.e. a walk always consists of at least one vertex. (Contributed by Alexander van der Vekens, 19-Jul-2018.) (Revised by AV, 2-Jan-2021.)
(𝐹(Walks‘𝐺)𝑃𝑃 ≠ ∅)
 
Theoremwlklenvm1 26511 The number of edges of a walk is the number of its vertices minus 1. (Contributed by Alexander van der Vekens, 1-Jul-2018.) (Revised by AV, 2-Jan-2021.)
(𝐹(Walks‘𝐺)𝑃 → (#‘𝐹) = ((#‘𝑃) − 1))
 
Theoremifpsnprss 26512 Lemma for wlkvtxeledg 26513: Two adjacent (not necessarily different) vertices 𝐴 and 𝐵 in a walk are incident with an edge 𝐸. (Contributed by AV, 4-Apr-2021.) (Revised by AV, 5-Nov-2021.)
(if-(𝐴 = 𝐵, 𝐸 = {𝐴}, {𝐴, 𝐵} ⊆ 𝐸) → {𝐴, 𝐵} ⊆ 𝐸)
 
Theoremwlkvtxeledg 26513* Each pair of adjacent vertices in a walk is a subset of an edge. (Contributed by AV, 28-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.)
𝐼 = (iEdg‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
 
Theoremwlkvtxiedg 26514* The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.)
𝐼 = (iEdg‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(#‘𝐹))∃𝑒 ∈ ran 𝐼{(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
 
Theoremrelwlk 26515 The set (Walks‘𝐺) of all walks on 𝐺 is a set of pairs by our definition of a walk, and so is a relation. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 19-Feb-2021.)
Rel (Walks‘𝐺)
 
Theoremwlkvv 26516 If there is at least one walk in the graph, all walks are in the universal class of ordered pairs. (Contributed by AV, 2-Jan-2021.)
((1st𝑊)(Walks‘𝐺)(2nd𝑊) → 𝑊 ∈ (V × V))
 
Theoremwlkop 26517 A walk is an ordered pair. (Contributed by Alexander van der Vekens, 30-Jun-2018.) (Revised by AV, 1-Jan-2021.)
(𝑊 ∈ (Walks‘𝐺) → 𝑊 = ⟨(1st𝑊), (2nd𝑊)⟩)
 
Theoremwlkcpr 26518 A walk as class with two components. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.)
(𝑊 ∈ (Walks‘𝐺) ↔ (1st𝑊)(Walks‘𝐺)(2nd𝑊))
 
Theoremwlk2f 26519* If there is a walk 𝑊 there is a pair of functions representing this walk. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
(𝑊 ∈ (Walks‘𝐺) → ∃𝑓𝑝 𝑓(Walks‘𝐺)𝑝)
 
Theoremwlkcomp 26520* A walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 1-Jan-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐹 = (1st𝑊)    &   𝑃 = (2nd𝑊)       ((𝐺𝑈𝑊 ∈ (𝑆 × 𝑇)) → (𝑊 ∈ (Walks‘𝐺) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
 
Theoremwlkcompim 26521* Implications for the properties of the components of a walk. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐹 = (1st𝑊)    &   𝑃 = (2nd𝑊)       (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
 
Theoremwlkelwrd 26522 The components of a walk are words/functions over a zero based range of integers. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 2-Jan-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐹 = (1st𝑊)    &   𝑃 = (2nd𝑊)       (𝑊 ∈ (Walks‘𝐺) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉))
 
Theoremwlkeq 26523* Conditions for two walks (within the same graph) being the same. (Contributed by AV, 1-Jul-2018.) (Revised by AV, 16-May-2019.) (Revised by AV, 14-Apr-2021.)
((𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺) ∧ 𝑁 = (#‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑥 ∈ (0..^𝑁)((1st𝐴)‘𝑥) = ((1st𝐵)‘𝑥) ∧ ∀𝑥 ∈ (0...𝑁)((2nd𝐴)‘𝑥) = ((2nd𝐵)‘𝑥))))
 
Theoremedginwlk 26524 The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 9-Dec-2021.)
𝐼 = (iEdg‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((Fun 𝐼𝐹 ∈ Word dom 𝐼𝐾 ∈ (0..^(#‘𝐹))) → (𝐼‘(𝐹𝐾)) ∈ 𝐸)
 
TheoremedginwlkOLD 26525 Obsolete version of edginwlk 26524 as of 9-Dec-2021. (Contributed by AV, 2-Jan-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐼 = (iEdg‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺𝑊 ∧ Fun 𝐼𝐹 ∈ Word dom 𝐼) → (𝐾 ∈ (0..^(#‘𝐹)) → (𝐼‘(𝐹𝐾)) ∈ 𝐸))
 
Theoremupgredginwlk 26526 The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 2-Jan-2021.)
𝐼 = (iEdg‘𝐺)    &   𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼) → (𝐾 ∈ (0..^(#‘𝐹)) → (𝐼‘(𝐹𝐾)) ∈ 𝐸))
 
Theoremiedginwlk 26527 The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 23-Apr-2021.)
𝐼 = (iEdg‘𝐺)       ((Fun 𝐼𝐹(Walks‘𝐺)𝑃𝑋 ∈ (0..^(#‘𝐹))) → (𝐼‘(𝐹𝑋)) ∈ ran 𝐼)
 
Theoremwlkl1loop 26528 A walk of length 1 from a vertex to itself is a loop. (Contributed by AV, 23-Apr-2021.)
(((Fun (iEdg‘𝐺) ∧ 𝐹(Walks‘𝐺)𝑃) ∧ ((#‘𝐹) = 1 ∧ (𝑃‘0) = (𝑃‘1))) → {(𝑃‘0)} ∈ (Edg‘𝐺))
 
Theoremwlk1walk 26529* A walk is a 1-walk "on the edge level" according to Aksoy et al. (Contributed by AV, 30-Dec-2020.)
𝐼 = (iEdg‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(#‘𝐹))1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
 
Theoremwlk1ewlk 26530 A walk is an s-walk "on the edge level" (with s=1) according to Aksoy et al. (Contributed by AV, 5-Jan-2021.)
(𝐹(Walks‘𝐺)𝑃𝐹 ∈ (𝐺 EdgWalks 1))
 
Theoremupgriswlk 26531* Properties of a pair of functions to be a walk in a pseudograph. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 28-Oct-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
 
Theoremupgrwlkedg 26532* The edges of a walk in a pseudograph join exactly the two corresponding adjacent vertices in the walk. (Contributed by AV, 27-Feb-2021.)
𝐼 = (iEdg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
 
Theoremupgrwlkcompim 26533* Implications for the properties of the components of a walk in a pseudograph. (Contributed by Alexander van der Vekens, 23-Jun-2018.) (Revised by AV, 14-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   𝐹 = (1st𝑊)    &   𝑃 = (2nd𝑊)       ((𝐺 ∈ UPGraph ∧ 𝑊 ∈ (Walks‘𝐺)) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
 
Theoremwlkvtxedg 26534* The vertices of a walk are connected by edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.)
𝐸 = (Edg‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (0..^(#‘𝐹))∃𝑒𝐸 {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ 𝑒)
 
Theoremupgrwlkvtxedg 26535* The pairs of connected vertices of a walk are edges in a pseudograph. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.)
𝐸 = (Edg‘𝐺)       ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ∈ 𝐸)
 
Theoremuspgr2wlkeq 26536* Conditions for two walks within the same simple pseudograph being the same. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 3-Jul-2018.) (Revised by AV, 14-Apr-2021.)
((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ 𝑁 = (#‘(1st𝐴))) → (𝐴 = 𝐵 ↔ (𝑁 = (#‘(1st𝐵)) ∧ ∀𝑦 ∈ (0...𝑁)((2nd𝐴)‘𝑦) = ((2nd𝐵)‘𝑦))))
 
Theoremuspgr2wlkeq2 26537 Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by Alexander van der Vekens, 25-Aug-2018.) (Revised by AV, 14-Apr-2021.)
(((𝐺 ∈ USPGraph ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ (Walks‘𝐺) ∧ (#‘(1st𝐴)) = 𝑁) ∧ (𝐵 ∈ (Walks‘𝐺) ∧ (#‘(1st𝐵)) = 𝑁)) → ((2nd𝐴) = (2nd𝐵) → 𝐴 = 𝐵))
 
Theoremuspgr2wlkeqi 26538 Conditions for two walks within the same simple pseudograph to be identical. It is sufficient that the vertices (in the same order) are identical. (Contributed by AV, 6-May-2021.)
((𝐺 ∈ USPGraph ∧ (𝐴 ∈ (Walks‘𝐺) ∧ 𝐵 ∈ (Walks‘𝐺)) ∧ (2nd𝐴) = (2nd𝐵)) → 𝐴 = 𝐵)
 
Theoremumgrwlknloop 26539* In a multigraph, each walk has no loops! (Contributed by Alexander van der Vekens, 7-Nov-2017.) (Revised by AV, 3-Jan-2021.)
((𝐺 ∈ UMGraph ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
 
TheoremwlkRes 26540* Restrictions of walks (i.e. special kinds of walks, for example paths - see pthsfval 26611) are sets. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 30-Dec-2020.) (Proof shortened by AV, 15-Jan-2021.)
(𝑓(𝑊𝐺)𝑝𝑓(Walks‘𝐺)𝑝)       {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑊𝐺)𝑝𝜑)} ∈ V
 
Theoremwlkv0 26541 If there is a walk in the null graph (a class without vertices), it would be the pair consisting of empty sets. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
(((Vtx‘𝐺) = ∅ ∧ 𝑊 ∈ (Walks‘𝐺)) → ((1st𝑊) = ∅ ∧ (2nd𝑊) = ∅))
 
Theoremg0wlk0 26542 There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
((Vtx‘𝐺) = ∅ → (Walks‘𝐺) = ∅)
 
Theorem0wlk0 26543 There is no walk for the empty set, i.e. in a null graph. (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
(Walks‘∅) = ∅
 
Theoremwlk0prc 26544 There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018.) (Revised by AV, 5-Mar-2021.)
((𝑆 ∉ V ∧ (Vtx‘𝑆) = (Vtx‘𝐺)) → (Walks‘𝐺) = ∅)
 
Theoremwlklenvclwlk 26545 The number of vertices in a walk equals the length of the walk after it is "closed" (i.e. enhanced by an edge from its last vertex to its first vertex). (Contributed by Alexander van der Vekens, 29-Jun-2018.) (Revised by AV, 2-May-2021.)
((𝑊 ∈ Word (Vtx‘𝐺) ∧ 1 ≤ (#‘𝑊)) → (⟨𝐹, (𝑊 ++ ⟨“(𝑊‘0)”⟩)⟩ ∈ (Walks‘𝐺) → (#‘𝐹) = (#‘𝑊)))
 
Theoremwlkson 26546* The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 30-Dec-2020.) (Revised by AV, 22-Mar-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐴𝑉𝐵𝑉) → (𝐴(WalksOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ (𝑝‘0) = 𝐴 ∧ (𝑝‘(#‘𝑓)) = 𝐵)})
 
Theoremiswlkon 26547 Properties of a pair of functions to be a walk between two given vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 31-Dec-2020.) (Revised by AV, 22-Mar-2021.)
𝑉 = (Vtx‘𝐺)       (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
 
Theoremwlkonprop 26548 Properties of a walk between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 31-Dec-2020.) (Proof shortened by AV, 16-Jan-2021.)
𝑉 = (Vtx‘𝐺)       (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
 
Theoremwlkpvtx 26549 A walk connects vertices. (Contributed by AV, 22-Feb-2021.)
𝑉 = (Vtx‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → (𝑁 ∈ (0...(#‘𝐹)) → (𝑃𝑁) ∈ 𝑉))
 
Theoremwlkepvtx 26550 The endpoints of a walk are vertices. (Contributed by AV, 31-Jan-2021.)
𝑉 = (Vtx‘𝐺)       (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) ∈ 𝑉 ∧ (𝑃‘(#‘𝐹)) ∈ 𝑉))
 
Theoremwlkoniswlk 26551 A walk between two vertices is a walk. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 2-Jan-2021.)
(𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Walks‘𝐺)𝑃)
 
Theoremwlkonwlk 26552 A walk is a walk between its endpoints. (Contributed by Alexander van der Vekens, 2-Nov-2017.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 31-Jan-2021.)
(𝐹(Walks‘𝐺)𝑃𝐹((𝑃‘0)(WalksOn‘𝐺)(𝑃‘(#‘𝐹)))𝑃)
 
Theoremwlkonwlk1l 26553 A walk is a walk from its first vertex to its last vertex. (Contributed by AV, 7-Feb-2021.) (Revised by AV, 22-Mar-2021.)
(𝜑𝐹(Walks‘𝐺)𝑃)       (𝜑𝐹((𝑃‘0)(WalksOn‘𝐺)( lastS ‘𝑃))𝑃)
 
Theoremwlksoneq1eq2 26554 Two walks with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021.)
((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐻(𝐶(WalksOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶𝐵 = 𝐷))
 
Theoremwlkonl1iedg 26555* If there is a walk between two vertices 𝐴 and 𝐵 at least of length 1, then the start vertex 𝐴 is incident with an edge. (Contributed by AV, 4-Apr-2021.)
𝐼 = (iEdg‘𝐺)       ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 ∧ (#‘𝐹) ≠ 0) → ∃𝑒 ∈ ran 𝐼 𝐴𝑒)
 
Theoremwlkon2n0 26556 The length of a walk between two different vertices is not 0 (i.e. is at least 1). (Contributed by AV, 3-Apr-2021.)
((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐴𝐵) → (#‘𝐹) ≠ 0)
 
Theorem2wlklem 26557* Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
(∀𝑘 ∈ {0, 1} (𝐸‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ↔ ((𝐸‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐸‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))
 
Theoremupgr2wlk 26558 Properties of a pair of functions to be a walk of length 2 in a pseudograph. Note that the vertices need not to be distinct and the edges can be loops or multiedges. (Contributed by Alexander van der Vekens, 16-Feb-2018.) (Revised by AV, 3-Jan-2021.) (Revised by AV, 28-Oct-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝐺 ∈ UPGraph → ((𝐹(Walks‘𝐺)𝑃 ∧ (#‘𝐹) = 2) ↔ (𝐹:(0..^2)⟶dom 𝐼𝑃:(0...2)⟶𝑉 ∧ ((𝐼‘(𝐹‘0)) = {(𝑃‘0), (𝑃‘1)} ∧ (𝐼‘(𝐹‘1)) = {(𝑃‘1), (𝑃‘2)}))))
 
Theoremwlkreslem0 26559 Lemma for wlkres 26561. TODO-AV: Will become obsolete if 𝐻 = (𝐹 ↾ (0..^𝑁)) is replaced by 𝐻 = (𝐹 substr ⟨0, 𝑁⟩) or 𝐻 = (𝐹 prefix 𝑁) in wlkres 26561 and trlres 26591. (Contributed by AV, 5-Mar-2021.)
((𝐹 ∈ Word 𝑆𝑁 ∈ (0...(#‘𝐹))) → (#‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
 
Theoremwlkreslem 26560 Lemma for wlkres 26561. (Contributed by AV, 5-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   (𝜑𝑁 ∈ (0..^(#‘𝐹)))    &   (𝜑 → (Vtx‘𝑆) = 𝑉)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))    &   𝐻 = (𝐹 ↾ (0..^𝑁))    &   𝑄 = (𝑃 ↾ (0...𝑁))       (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V))
 
Theoremwlkres 26561 The restriction 𝐻, 𝑄 of a walk 𝐹, 𝑃 to an initial segment of the walk (of length 𝑁) forms a walk on the subgraph 𝑆 consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres 27068. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 5-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   (𝜑𝑁 ∈ (0..^(#‘𝐹)))    &   (𝜑 → (Vtx‘𝑆) = 𝑉)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))    &   𝐻 = (𝐹 ↾ (0..^𝑁))    &   𝑄 = (𝑃 ↾ (0...𝑁))       (𝜑𝐻(Walks‘𝑆)𝑄)
 
Theoremredwlklem 26562 Lemma for redwlk 26563. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (#‘𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉) → (𝑃 ↾ (0..^(#‘𝐹))):(0...(#‘(𝐹 ↾ (0..^((#‘𝐹) − 1)))))⟶𝑉)
 
Theoremredwlk 26563 A walk ending at the last but one vertex of the walk is a walk. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
((𝐹(Walks‘𝐺)𝑃 ∧ 1 ≤ (#‘𝐹)) → (𝐹 ↾ (0..^((#‘𝐹) − 1)))(Walks‘𝐺)(𝑃 ↾ (0..^(#‘𝐹))))
 
Theoremwlkp1lem1 26564 Lemma for wlkp1 26572. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (#‘𝐹)       (𝜑 → ¬ (𝑁 + 1) ∈ dom 𝑃)
 
Theoremwlkp1lem2 26565 Lemma for wlkp1 26572. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (#‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})       (𝜑 → (#‘𝐻) = (𝑁 + 1))
 
Theoremwlkp1lem3 26566 Lemma for wlkp1 26572. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (#‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})       (𝜑 → ((iEdg‘𝑆)‘(𝐻𝑁)) = ((𝐼 ∪ {⟨𝐵, 𝐸⟩})‘𝐵))
 
Theoremwlkp1lem4 26567 Lemma for wlkp1 26572. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (#‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})    &   𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})    &   (𝜑 → (Vtx‘𝑆) = 𝑉)       (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V))
 
Theoremwlkp1lem5 26568* Lemma for wlkp1 26572. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (#‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})    &   𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})    &   (𝜑 → (Vtx‘𝑆) = 𝑉)       (𝜑 → ∀𝑘 ∈ (0...𝑁)(𝑄𝑘) = (𝑃𝑘))
 
Theoremwlkp1lem6 26569* Lemma for wlkp1 26572. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (#‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})    &   𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})    &   (𝜑 → (Vtx‘𝑆) = 𝑉)       (𝜑 → ∀𝑘 ∈ (0..^𝑁)((𝑄𝑘) = (𝑃𝑘) ∧ (𝑄‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝑆)‘(𝐻𝑘)) = (𝐼‘(𝐹𝑘))))
 
Theoremwlkp1lem7 26570 Lemma for wlkp1 26572. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (#‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})    &   𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})    &   (𝜑 → (Vtx‘𝑆) = 𝑉)       (𝜑 → {(𝑄𝑁), (𝑄‘(𝑁 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑁)))
 
Theoremwlkp1lem8 26571* Lemma for wlkp1 26572. (Contributed by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (#‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})    &   𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})    &   (𝜑 → (Vtx‘𝑆) = 𝑉)    &   ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})       (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐻))if-((𝑄𝑘) = (𝑄‘(𝑘 + 1)), ((iEdg‘𝑆)‘(𝐻𝑘)) = {(𝑄𝑘)}, {(𝑄𝑘), (𝑄‘(𝑘 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑘))))
 
Theoremwlkp1 26572 Append one path segment (edge) 𝐸 from vertex (𝑃𝑁) to a vertex 𝐶 to a walk 𝐹, 𝑃 to become a walk 𝐻, 𝑄 of the supergraph 𝑆 obtained by adding the new edge to the graph 𝐺. Formerly proven directly for Eulerian paths (for pseudographs), see eupthp1 27069. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 6-Mar-2021.) (Prove shortened by AV, 18-Apr-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → Fun 𝐼)    &   (𝜑𝐼 ∈ Fin)    &   (𝜑𝐵 ∈ V)    &   (𝜑𝐶𝑉)    &   (𝜑 → ¬ 𝐵 ∈ dom 𝐼)    &   (𝜑𝐹(Walks‘𝐺)𝑃)    &   𝑁 = (#‘𝐹)    &   (𝜑𝐸 ∈ (Edg‘𝐺))    &   (𝜑 → {(𝑃𝑁), 𝐶} ⊆ 𝐸)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ∪ {⟨𝐵, 𝐸⟩}))    &   𝐻 = (𝐹 ∪ {⟨𝑁, 𝐵⟩})    &   𝑄 = (𝑃 ∪ {⟨(𝑁 + 1), 𝐶⟩})    &   (𝜑 → (Vtx‘𝑆) = 𝑉)    &   ((𝜑𝐶 = (𝑃𝑁)) → 𝐸 = {𝐶})       (𝜑𝐻(Walks‘𝑆)𝑄)
 
Theoremwlkdlem1 26573* Lemma 1 for wlkd 26577. (Contributed by AV, 7-Feb-2021.)
(𝜑𝑃 ∈ Word V)    &   (𝜑𝐹 ∈ Word V)    &   (𝜑 → (#‘𝑃) = ((#‘𝐹) + 1))    &   (𝜑 → ∀𝑘 ∈ (0...(#‘𝐹))(𝑃𝑘) ∈ 𝑉)       (𝜑𝑃:(0...(#‘𝐹))⟶𝑉)
 
Theoremwlkdlem2 26574* Lemma 2 for wlkd 26577. (Contributed by AV, 7-Feb-2021.)
(𝜑𝑃 ∈ Word V)    &   (𝜑𝐹 ∈ Word V)    &   (𝜑 → (#‘𝑃) = ((#‘𝐹) + 1))    &   (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))       (𝜑 → (((#‘𝐹) ∈ ℕ → (𝑃‘(#‘𝐹)) ∈ (𝐼‘(𝐹‘((#‘𝐹) − 1)))) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
 
Theoremwlkdlem3 26575* Lemma 3 for wlkd 26577. (Contributed by Alexander van der Vekens, 10-Nov-2017.) (Revised by AV, 7-Feb-2021.)
(𝜑𝑃 ∈ Word V)    &   (𝜑𝐹 ∈ Word V)    &   (𝜑 → (#‘𝑃) = ((#‘𝐹) + 1))    &   (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))       (𝜑𝐹 ∈ Word dom 𝐼)
 
Theoremwlkdlem4 26576* Lemma 4 for wlkd 26577. (Contributed by Alexander van der Vekens, 1-Feb-2018.) (Revised by AV, 23-Jan-2021.)
(𝜑𝑃 ∈ Word V)    &   (𝜑𝐹 ∈ Word V)    &   (𝜑 → (#‘𝑃) = ((#‘𝐹) + 1))    &   (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))    &   (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))       (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
 
Theoremwlkd 26577* Two words representing a walk in a graph. (Contributed by AV, 7-Feb-2021.)
(𝜑𝑃 ∈ Word V)    &   (𝜑𝐹 ∈ Word V)    &   (𝜑 → (#‘𝑃) = ((#‘𝐹) + 1))    &   (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))    &   (𝜑 → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))    &   (𝜑𝐺𝑊)    &   𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑 → ∀𝑘 ∈ (0...(#‘𝐹))(𝑃𝑘) ∈ 𝑉)       (𝜑𝐹(Walks‘𝐺)𝑃)
 
16.3.2  Walks for loop-free graphs
 
Theoremlfgrwlkprop 26578* Two adjacent vertices in a walk are different in a loop-free graph. (Contributed by AV, 28-Jan-2021.)
𝐼 = (iEdg‘𝐺)       ((𝐹(Walks‘𝐺)𝑃𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
 
Theoremlfgriswlk 26579* Conditions for a pair of functions to be a walk in a loop-free graph. (Contributed by AV, 28-Jan-2021.)
𝐼 = (iEdg‘𝐺)    &   𝑉 = (Vtx‘𝐺)       ((𝐺𝑊𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
 
Theoremlfgrwlknloop 26580* In a loop-free graph, each walk has no loops! (Contributed by AV, 2-Feb-2021.)
𝐼 = (iEdg‘𝐺)    &   𝑉 = (Vtx‘𝐺)       ((𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ∧ 𝐹(Walks‘𝐺)𝑃) → ∀𝑘 ∈ (0..^(#‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
 
16.3.3  Trails
 
Syntaxctrls 26581 Extend class notation with trails (within a graph).
class Trails
 
Syntaxctrlson 26582 Extend class notation with trails between two vertices (within a graph).
class TrailsOn
 
Definitiondf-trls 26583* Define the set of all Trails (in an undirected graph).

According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A trail is a walk in which all edges are distinct.

According to Bollobas: "... walk is called a trail if all its edges are distinct.", see Definition of [Bollobas] p. 5.

Therefore, a trail can be represented by an injective mapping f from { 1 , ... , n } and a mapping p from { 0 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the trail is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.)

Trails = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun 𝑓)})
 
Definitiondf-trlson 26584* Define the collection of trails with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.)
TrailsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(WalksOn‘𝑔)𝑏)𝑝𝑓(Trails‘𝑔)𝑝)}))
 
Theoremreltrls 26585 The set (Trails‘𝐺) of all trails on 𝐺 is a set of pairs by our definition of a trail, and so is a relation. (Contributed by AV, 29-Oct-2021.)
Rel (Trails‘𝐺)
 
Theoremtrlsfval 26586* The set of trails (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.)
(Trails‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝐺)𝑝 ∧ Fun 𝑓)}
 
Theoremistrl 26587 Conditions for a pair of classes/functions to be a trail (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) (Revised by AV, 29-Oct-2021.)
(𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
 
Theoremtrliswlk 26588 A trail is a walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 29-Oct-2021.)
(𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
 
Theoremtrlf1 26589 The enumeration 𝐹 of a trail 𝐹, 𝑃 is injective. (Contributed by AV, 20-Feb-2021.) (Proof shortened by AV, 29-Oct-2021.)
𝐼 = (iEdg‘𝐺)       (𝐹(Trails‘𝐺)𝑃𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼)
 
Theoremtrlreslem 26590 Lemma for trlres 26591. Formerly part of proof of eupthres 27068. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐹(Trails‘𝐺)𝑃)    &   (𝜑𝑁 ∈ (0..^(#‘𝐹)))    &   𝐻 = (𝐹 ↾ (0..^𝑁))       (𝜑𝐻:(0..^(#‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
 
Theoremtrlres 26591 The restriction 𝐻, 𝑄 of a trail 𝐹, 𝑃 to an initial segment of the trail (of length 𝑁) forms a trail on the subgraph 𝑆 consisting of the edges in the initial segment. (Contributed by AV, 6-Mar-2021.) (Proof shortened by AV, 29-Oct-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)    &   (𝜑𝐹(Trails‘𝐺)𝑃)    &   (𝜑𝑁 ∈ (0..^(#‘𝐹)))    &   𝐻 = (𝐹 ↾ (0..^𝑁))    &   (𝜑 → (Vtx‘𝑆) = 𝑉)    &   (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))    &   𝑄 = (𝑃 ↾ (0...𝑁))       (𝜑𝐻(Trails‘𝑆)𝑄)
 
Theoremupgrtrls 26592* The set of trails in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝐺 ∈ UPGraph → (Trails‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ ((𝑓 ∈ Word dom 𝐼 ∧ Fun 𝑓) ∧ 𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
 
Theoremupgristrl 26593* Properties of a pair of functions to be a trail in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 29-Oct-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ Fun 𝐹) ∧ 𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
 
Theoremupgrf1istrl 26594* Properties of a pair of a one-to-one function into the set of indices of edges and a function into the set of vertices to be a trail in a pseudograph. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 29-Oct-2021.)
𝑉 = (Vtx‘𝐺)    &   𝐼 = (iEdg‘𝐺)       (𝐺 ∈ UPGraph → (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
 
Theoremwksonproplem 26595* Lemma for theorems for properties of walks between two vertices, e.g. trlsonprop 26598. (Contributed by AV, 16-Jan-2021.)
𝑉 = (Vtx‘𝐺)    &   (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))    &   𝑊 = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(𝑂𝑔)𝑏)𝑝𝑓(𝑄𝑔)𝑝)}))    &   (((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ 𝑓(𝑄𝐺)𝑝) → 𝑓(Walks‘𝐺)𝑝)       (𝐹(𝐴(𝑊𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(𝑂𝐺)𝐵)𝑃𝐹(𝑄𝐺)𝑃)))
 
Theoremtrlsonfval 26596* The set of trails between two vertices. (Contributed by Alexander van der Vekens, 4-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 15-Jan-2021.) (Revised by AV, 21-Mar-2021.)
𝑉 = (Vtx‘𝐺)       ((𝐴𝑉𝐵𝑉) → (𝐴(TrailsOn‘𝐺)𝐵) = {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝐴(WalksOn‘𝐺)𝐵)𝑝𝑓(Trails‘𝐺)𝑝)})
 
Theoremistrlson 26597 Properties of a pair of functions to be a trail between two given vertices. (Contributed by Alexander van der Vekens, 3-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 21-Mar-2021.)
𝑉 = (Vtx‘𝐺)       (((𝐴𝑉𝐵𝑉) ∧ (𝐹𝑈𝑃𝑍)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
 
Theoremtrlsonprop 26598 Properties of a trail between two vertices. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Revised by AV, 7-Jan-2021.) (Proof shortened by AV, 16-Jan-2021.)
𝑉 = (Vtx‘𝐺)       (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴𝑉𝐵𝑉) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
 
Theoremtrlsonistrl 26599 A trail between two vertices is a trail. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 7-Jan-2021.)
(𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)
 
Theoremtrlsonwlkon 26600 A trail between two vertices is a walk between these vertices. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Revised by AV, 7-Jan-2021.)
(𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42322
  Copyright terms: Public domain < Previous  Next >