MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopyeulem Structured version   Visualization version   GIF version

Theorem trgcopyeulem 26593
Description: Lemma for trgcopyeu 26594. (Contributed by Thierry Arnoux, 8-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
trgcopyeulem.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
trgcopyeulem.x (𝜑𝑋𝑃)
trgcopyeulem.y (𝜑𝑌𝑃)
trgcopyeulem.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑋”⟩)
trgcopyeulem.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑌”⟩)
trgcopyeulem.3 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
trgcopyeulem.4 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
Assertion
Ref Expression
trgcopyeulem (𝜑𝑋 = 𝑌)
Distinct variable groups:   ,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏,𝑡   𝐵,𝑎,𝑏,𝑡   𝐶,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐸,𝑎,𝑏,𝑡   𝐹,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑎,𝑏,𝑡   𝐾,𝑎   𝑂,𝑎,𝑏,𝑡   𝑋,𝑎,𝑏,𝑡   𝑌,𝑎,𝑏,𝑡
Allowed substitution hints:   𝐾(𝑡,𝑏)

Proof of Theorem trgcopyeulem
StepHypRef Expression
1 trgcopy.p . 2 𝑃 = (Base‘𝐺)
2 trgcopy.m . 2 = (dist‘𝐺)
3 trgcopy.i . 2 𝐼 = (Itv‘𝐺)
4 trgcopy.g . 2 (𝜑𝐺 ∈ TarskiG)
5 trgcopy.l . . 3 𝐿 = (LineG‘𝐺)
6 trgcopy.b . . 3 (𝜑𝐵𝑃)
7 trgcopy.c . . 3 (𝜑𝐶𝑃)
8 trgcopy.a . . 3 (𝜑𝐴𝑃)
9 trgcopy.1 . . 3 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
101, 5, 3, 4, 6, 7, 8, 9ncoltgdim2 26353 . 2 (𝜑𝐺DimTarskiG≥2)
11 eqid 2823 . 2 ((lInvG‘𝐺)‘(𝐷𝐿𝐸)) = ((lInvG‘𝐺)‘(𝐷𝐿𝐸))
12 trgcopy.d . . 3 (𝜑𝐷𝑃)
13 trgcopy.e . . 3 (𝜑𝐸𝑃)
14 trgcopy.f . . . 4 (𝜑𝐹𝑃)
15 trgcopy.2 . . . 4 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
161, 3, 5, 4, 12, 13, 14, 15ncolne1 26413 . . 3 (𝜑𝐷𝐸)
171, 3, 5, 4, 12, 13, 16tgelrnln 26418 . 2 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
18 trgcopyeulem.x . 2 (𝜑𝑋𝑃)
19 trgcopyeulem.y . 2 (𝜑𝑌𝑃)
20 eqid 2823 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
214ad2antrr 724 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐺 ∈ TarskiG)
2217ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
23 simplr 767 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝐷𝐿𝐸))
241, 5, 3, 21, 22, 23tglnpt 26337 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡𝑃)
25 eqid 2823 . . . . . . . . 9 ((pInvG‘𝐺)‘𝑡) = ((pInvG‘𝐺)‘𝑡)
261, 2, 3, 4, 10, 11, 5, 17, 19lmicl 26574 . . . . . . . . . 10 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ 𝑃)
2726ad2antrr 724 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ 𝑃)
2818ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋𝑃)
2912ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐷𝑃)
3013ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐸𝑃)
31 eqid 2823 . . . . . . . . . . . 12 (cgrG‘𝐺) = (cgrG‘𝐺)
3216ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐷𝐸)
3332necomd 3073 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐸𝐷)
341, 3, 5, 21, 30, 29, 24, 33, 23lncom 26410 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝐸𝐿𝐷))
3534orcd 869 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑡 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
361, 5, 3, 21, 30, 29, 24, 35colrot1 26347 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 ∈ (𝐷𝐿𝑡) ∨ 𝐷 = 𝑡))
37 trgcopyeulem.1 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑋”⟩)
381, 2, 3, 31, 4, 8, 6, 7, 12, 13, 18, 37cgr3simp3 26310 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 𝐴) = (𝑋 𝐷))
391, 2, 3, 4, 7, 8, 18, 12, 38tgcgrcomlr 26268 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 𝐶) = (𝐷 𝑋))
40 trgcopyeulem.2 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑌”⟩)
411, 2, 3, 31, 4, 8, 6, 7, 12, 13, 19, 40cgr3simp3 26310 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 𝐴) = (𝑌 𝐷))
421, 2, 3, 4, 7, 8, 19, 12, 41tgcgrcomlr 26268 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 𝐶) = (𝐷 𝑌))
4339, 42eqtr3d 2860 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 𝑋) = (𝐷 𝑌))
441, 2, 3, 4, 10, 11, 5, 17, 12, 19lmiiso 26585 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 𝑌))
451, 3, 5, 4, 12, 13, 16tglinerflx1 26421 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (𝐷𝐿𝐸))
461, 2, 3, 4, 10, 11, 5, 17, 12, 45lmicinv 26581 . . . . . . . . . . . . . . 15 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) = 𝐷)
4746oveq1d 7173 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
4843, 44, 473eqtr2d 2864 . . . . . . . . . . . . 13 (𝜑 → (𝐷 𝑋) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
4948ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 𝑋) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
501, 2, 3, 31, 4, 8, 6, 7, 12, 13, 18, 37cgr3simp2 26309 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 𝐶) = (𝐸 𝑋))
511, 2, 3, 31, 4, 8, 6, 7, 12, 13, 19, 40cgr3simp2 26309 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 𝐶) = (𝐸 𝑌))
5250, 51eqtr3d 2860 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 𝑋) = (𝐸 𝑌))
531, 2, 3, 4, 10, 11, 5, 17, 13, 19lmiiso 26585 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 𝑌))
541, 3, 5, 4, 12, 13, 16tglinerflx2 26422 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ (𝐷𝐿𝐸))
551, 2, 3, 4, 10, 11, 5, 17, 13, 54lmicinv 26581 . . . . . . . . . . . . . . 15 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) = 𝐸)
5655oveq1d 7173 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
5752, 53, 563eqtr2d 2864 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝑋) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
5857ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 𝑋) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
591, 5, 3, 21, 29, 30, 24, 31, 28, 27, 2, 32, 36, 49, 58lncgr 26357 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑡 𝑋) = (𝑡 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
60 simpr 487 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
611, 2, 3, 5, 20, 21, 24, 25, 27, 28, 59, 60ismir 26447 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 = (((pInvG‘𝐺)‘𝑡)‘(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
6261eqcomd 2829 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((pInvG‘𝐺)‘𝑡)‘(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑋)
631, 2, 3, 5, 20, 21, 24, 25, 27, 62mircom 26451 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((pInvG‘𝐺)‘𝑡)‘𝑋) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
6463eqcomd 2829 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((pInvG‘𝐺)‘𝑡)‘𝑋))
6510ad2antrr 724 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐺DimTarskiG≥2)
661, 2, 3, 21, 65, 28, 27, 20, 24ismidb 26566 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((pInvG‘𝐺)‘𝑡)‘𝑋) ↔ (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑡))
6764, 66mpbid 234 . . . . . 6 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑡)
6867, 23eqeltrd 2915 . . . . 5 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸))
69 trgcopyeulem.o . . . . . . . . 9 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
70 trgcopyeulem.4 . . . . . . . . 9 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
71 trgcopyeulem.3 . . . . . . . . . 10 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
721, 3, 5, 4, 17, 18, 69, 14, 71hpgcom 26555 . . . . . . . . 9 (𝜑𝐹((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋)
731, 3, 5, 4, 17, 19, 69, 14, 70, 18, 72hpgtr 26556 . . . . . . . 8 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋)
741, 3, 5, 69, 4, 17, 19, 14, 70hpgne1 26549 . . . . . . . . . 10 (𝜑 → ¬ 𝑌 ∈ (𝐷𝐿𝐸))
751, 2, 3, 5, 4, 10, 17, 69, 11, 19, 74lmiopp 26590 . . . . . . . . 9 (𝜑𝑌𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
761, 3, 5, 69, 4, 17, 19, 18, 26, 75lnopp2hpgb 26551 . . . . . . . 8 (𝜑 → (𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ↔ 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋))
7773, 76mpbird 259 . . . . . . 7 (𝜑𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
781, 2, 3, 69, 18, 26islnopp 26527 . . . . . . 7 (𝜑 → (𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ↔ ((¬ 𝑋 ∈ (𝐷𝐿𝐸) ∧ ¬ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ (𝐷𝐿𝐸)) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))))
7977, 78mpbid 234 . . . . . 6 (𝜑 → ((¬ 𝑋 ∈ (𝐷𝐿𝐸) ∧ ¬ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ (𝐷𝐿𝐸)) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
8079simprd 498 . . . . 5 (𝜑 → ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
8168, 80r19.29a 3291 . . . 4 (𝜑 → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸))
8221adantr 483 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐺 ∈ TarskiG)
8322adantr 483 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐷𝐿𝐸) ∈ ran 𝐿)
841, 2, 3, 69, 5, 17, 4, 18, 26, 77oppne3 26531 . . . . . . . . . . 11 (𝜑𝑋 ≠ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
851, 3, 5, 4, 18, 26, 84tgelrnln 26418 . . . . . . . . . 10 (𝜑 → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8685ad2antrr 724 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8786adantr 483 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8884ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 ≠ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
891, 3, 5, 21, 28, 27, 24, 88, 60btwnlng1 26407 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
9023, 89elind 4173 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
9190adantr 483 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
9254ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸 ∈ (𝐷𝐿𝐸))
931, 3, 5, 4, 18, 26, 84tglinerflx1 26421 . . . . . . . . 9 (𝜑𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
9493ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
95 simpr 487 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸𝑡)
9679simplld 766 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝐷𝐿𝐸))
9796ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ¬ 𝑋 ∈ (𝐷𝐿𝐸))
98 nelne2 3117 . . . . . . . . . . 11 ((𝑡 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝑋 ∈ (𝐷𝐿𝐸)) → 𝑡𝑋)
9923, 97, 98syl2anc 586 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡𝑋)
10099necomd 3073 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋𝑡)
101100adantr 483 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋𝑡)
10264oveq2d 7174 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
10358, 102eqtrd 2858 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
104103adantr 483 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
10530adantr 483 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸𝑃)
10624adantr 483 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑡𝑃)
10728adantr 483 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋𝑃)
1081, 2, 3, 5, 20, 82, 105, 106, 107israg 26485 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (⟨“𝐸𝑡𝑋”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋))))
109104, 108mpbird 259 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → ⟨“𝐸𝑡𝑋”⟩ ∈ (∟G‘𝐺))
1101, 2, 3, 5, 82, 83, 87, 91, 92, 94, 95, 101, 109ragperp 26505 . . . . . . 7 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
11121adantr 483 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐺 ∈ TarskiG)
11222adantr 483 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷𝐿𝐸) ∈ ran 𝐿)
11386adantr 483 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
11490adantr 483 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
11545ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷 ∈ (𝐷𝐿𝐸))
11693ad3antrrr 728 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
117 simpr 487 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷𝑡)
118100adantr 483 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋𝑡)
11964oveq2d 7174 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
12049, 119eqtrd 2858 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
121120adantr 483 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
12229adantr 483 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷𝑃)
12324adantr 483 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑡𝑃)
12428adantr 483 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋𝑃)
1251, 2, 3, 5, 20, 111, 122, 123, 124israg 26485 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (⟨“𝐷𝑡𝑋”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋))))
126121, 125mpbird 259 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → ⟨“𝐷𝑡𝑋”⟩ ∈ (∟G‘𝐺))
1271, 2, 3, 5, 111, 112, 113, 114, 115, 116, 117, 118, 126ragperp 26505 . . . . . . 7 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
128 neneor 3120 . . . . . . . 8 (𝐸𝐷 → (𝐸𝑡𝐷𝑡))
12933, 128syl 17 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸𝑡𝐷𝑡))
130110, 127, 129mpjaodan 955 . . . . . 6 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
131130orcd 869 . . . . 5 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
132131, 80r19.29a 3291 . . . 4 (𝜑 → ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
1331, 2, 3, 4, 10, 11, 5, 17, 18, 26islmib 26575 . . . 4 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋) ↔ ((𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))))
13481, 132, 133mpbir2and 711 . . 3 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋))
135134eqcomd 2829 . 2 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
1361, 2, 3, 4, 10, 11, 5, 17, 18, 19, 135lmieq 26579 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  wrex 3141  cdif 3935  cin 3937   class class class wbr 5068  {copab 5130  ran crn 5558  cfv 6357  (class class class)co 7158  2c2 11695  ⟨“cs3 14206  Basecbs 16485  distcds 16576  TarskiGcstrkg 26218  DimTarskiGcstrkgld 26222  Itvcitv 26224  LineGclng 26225  cgrGccgrg 26298  hlGchlg 26388  pInvGcmir 26440  ∟Gcrag 26481  ⟂Gcperpg 26483  hpGchpg 26545  midGcmid 26560  lInvGclmi 26561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-trkgc 26236  df-trkgb 26237  df-trkgcb 26238  df-trkgld 26240  df-trkg 26241  df-cgrg 26299  df-leg 26371  df-hlg 26389  df-mir 26441  df-rag 26482  df-perpg 26484  df-hpg 26546  df-mid 26562  df-lmi 26563
This theorem is referenced by:  trgcopyeu  26594  acopyeu  26622
  Copyright terms: Public domain W3C validator