Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hspval Structured version   Visualization version   GIF version

Theorem hspval 41144
Description: The value of the half-space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hspval.h 𝐻 = (𝑥 ∈ Fin ↦ (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
hspval.x (𝜑𝑋 ∈ Fin)
hspval.i (𝜑𝐼𝑋)
hspval.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hspval (𝜑 → (𝐼(𝐻𝑋)𝑌) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
Distinct variable groups:   𝑖,𝐼,𝑘,𝑦   𝑖,𝑋,𝑘,𝑥,𝑦   𝑖,𝑌,𝑘,𝑦   𝜑,𝑖,𝑘,𝑥,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦,𝑖,𝑘)   𝐼(𝑥)   𝑌(𝑥)

Proof of Theorem hspval
StepHypRef Expression
1 hspval.h . . . 4 𝐻 = (𝑥 ∈ Fin ↦ (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
21a1i 11 . . 3 (𝜑𝐻 = (𝑥 ∈ Fin ↦ (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ))))
3 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
4 eqidd 2652 . . . . 5 (𝑥 = 𝑋 → ℝ = ℝ)
5 ixpeq1 7961 . . . . 5 (𝑥 = 𝑋X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ))
63, 4, 5mpt2eq123dv 6759 . . . 4 (𝑥 = 𝑋 → (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) = (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
76adantl 481 . . 3 ((𝜑𝑥 = 𝑋) → (𝑖𝑥, 𝑦 ∈ ℝ ↦ X𝑘𝑥 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) = (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
8 hspval.x . . 3 (𝜑𝑋 ∈ Fin)
9 reex 10065 . . . . 5 ℝ ∈ V
109a1i 11 . . . 4 (𝜑 → ℝ ∈ V)
11 eqid 2651 . . . . 5 (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) = (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ))
1211mpt2exg 7290 . . . 4 ((𝑋 ∈ Fin ∧ ℝ ∈ V) → (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) ∈ V)
138, 10, 12syl2anc 694 . . 3 (𝜑 → (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)) ∈ V)
142, 7, 8, 13fvmptd 6327 . 2 (𝜑 → (𝐻𝑋) = (𝑖𝑋, 𝑦 ∈ ℝ ↦ X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ)))
15 simpl 472 . . . . . 6 ((𝑖 = 𝐼𝑦 = 𝑌) → 𝑖 = 𝐼)
1615eqeq2d 2661 . . . . 5 ((𝑖 = 𝐼𝑦 = 𝑌) → (𝑘 = 𝑖𝑘 = 𝐼))
17 simpr 476 . . . . . 6 ((𝑖 = 𝐼𝑦 = 𝑌) → 𝑦 = 𝑌)
1817oveq2d 6706 . . . . 5 ((𝑖 = 𝐼𝑦 = 𝑌) → (-∞(,)𝑦) = (-∞(,)𝑌))
1916, 18ifbieq1d 4142 . . . 4 ((𝑖 = 𝐼𝑦 = 𝑌) → if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
2019ixpeq2dv 7966 . . 3 ((𝑖 = 𝐼𝑦 = 𝑌) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
2120adantl 481 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑦 = 𝑌)) → X𝑘𝑋 if(𝑘 = 𝑖, (-∞(,)𝑦), ℝ) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
22 hspval.i . 2 (𝜑𝐼𝑋)
23 hspval.y . 2 (𝜑𝑌 ∈ ℝ)
24 ovex 6718 . . . . . 6 (-∞(,)𝑌) ∈ V
2524, 9keepel 4188 . . . . 5 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V
2625a1i 11 . . . 4 ((𝜑𝑘𝑋) → if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V)
2726ralrimiva 2995 . . 3 (𝜑 → ∀𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V)
28 ixpexg 7974 . . 3 (∀𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V → X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V)
2927, 28syl 17 . 2 (𝜑X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ) ∈ V)
3014, 21, 22, 23, 29ovmpt2d 6830 1 (𝜑 → (𝐼(𝐻𝑋)𝑌) = X𝑘𝑋 if(𝑘 = 𝐼, (-∞(,)𝑌), ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  ifcif 4119  cmpt 4762  cfv 5926  (class class class)co 6690  cmpt2 6692  Xcixp 7950  Fincfn 7997  cr 9973  -∞cmnf 10110  (,)cioo 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-1st 7210  df-2nd 7211  df-ixp 7951
This theorem is referenced by:  hspdifhsp  41151  hspmbllem2  41162  hspmbl  41164
  Copyright terms: Public domain W3C validator