MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inf3lem5 Structured version   Visualization version   GIF version

Theorem inf3lem5 9095
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 9098 for detailed description. (Contributed by NM, 29-Oct-1996.)
Hypotheses
Ref Expression
inf3lem.1 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
inf3lem.2 𝐹 = (rec(𝐺, ∅) ↾ ω)
inf3lem.3 𝐴 ∈ V
inf3lem.4 𝐵 ∈ V
Assertion
Ref Expression
inf3lem5 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐹𝐵) ⊊ (𝐹𝐴)))
Distinct variable group:   𝑥,𝑦,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐹(𝑥,𝑦,𝑤)   𝐺(𝑥,𝑦,𝑤)

Proof of Theorem inf3lem5
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 7590 . . . 4 ((𝐵𝐴𝐴 ∈ ω) → 𝐵 ∈ ω)
21ancoms 461 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵 ∈ ω)
3 nnord 7588 . . . . . . 7 (𝐴 ∈ ω → Ord 𝐴)
4 ordsucss 7533 . . . . . . 7 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
53, 4syl 17 . . . . . 6 (𝐴 ∈ ω → (𝐵𝐴 → suc 𝐵𝐴))
65adantr 483 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → suc 𝐵𝐴))
7 peano2b 7596 . . . . . 6 (𝐵 ∈ ω ↔ suc 𝐵 ∈ ω)
8 fveq2 6670 . . . . . . . . . 10 (𝑣 = suc 𝐵 → (𝐹𝑣) = (𝐹‘suc 𝐵))
98psseq2d 4070 . . . . . . . . 9 (𝑣 = suc 𝐵 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
109imbi2d 343 . . . . . . . 8 (𝑣 = suc 𝐵 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵))))
11 fveq2 6670 . . . . . . . . . 10 (𝑣 = 𝑢 → (𝐹𝑣) = (𝐹𝑢))
1211psseq2d 4070 . . . . . . . . 9 (𝑣 = 𝑢 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹𝑢)))
1312imbi2d 343 . . . . . . . 8 (𝑣 = 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢))))
14 fveq2 6670 . . . . . . . . . 10 (𝑣 = suc 𝑢 → (𝐹𝑣) = (𝐹‘suc 𝑢))
1514psseq2d 4070 . . . . . . . . 9 (𝑣 = suc 𝑢 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹‘suc 𝑢)))
1615imbi2d 343 . . . . . . . 8 (𝑣 = suc 𝑢 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
17 fveq2 6670 . . . . . . . . . 10 (𝑣 = 𝐴 → (𝐹𝑣) = (𝐹𝐴))
1817psseq2d 4070 . . . . . . . . 9 (𝑣 = 𝐴 → ((𝐹𝐵) ⊊ (𝐹𝑣) ↔ (𝐹𝐵) ⊊ (𝐹𝐴)))
1918imbi2d 343 . . . . . . . 8 (𝑣 = 𝐴 → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑣)) ↔ ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
20 inf3lem.1 . . . . . . . . . . 11 𝐺 = (𝑦 ∈ V ↦ {𝑤𝑥 ∣ (𝑤𝑥) ⊆ 𝑦})
21 inf3lem.2 . . . . . . . . . . 11 𝐹 = (rec(𝐺, ∅) ↾ ω)
22 inf3lem.4 . . . . . . . . . . 11 𝐵 ∈ V
2320, 21, 22, 22inf3lem4 9094 . . . . . . . . . 10 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐵 ∈ ω → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
2423com12 32 . . . . . . . . 9 (𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
257, 24sylbir 237 . . . . . . . 8 (suc 𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝐵)))
26 vex 3497 . . . . . . . . . . . 12 𝑢 ∈ V
2720, 21, 26, 22inf3lem4 9094 . . . . . . . . . . 11 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝑢 ∈ ω → (𝐹𝑢) ⊊ (𝐹‘suc 𝑢)))
28 psstr 4081 . . . . . . . . . . . 12 (((𝐹𝐵) ⊊ (𝐹𝑢) ∧ (𝐹𝑢) ⊊ (𝐹‘suc 𝑢)) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))
2928expcom 416 . . . . . . . . . . 11 ((𝐹𝑢) ⊊ (𝐹‘suc 𝑢) → ((𝐹𝐵) ⊊ (𝐹𝑢) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢)))
3027, 29syl6com 37 . . . . . . . . . 10 (𝑢 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐹𝐵) ⊊ (𝐹𝑢) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3130a2d 29 . . . . . . . . 9 (𝑢 ∈ ω → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢)) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3231ad2antrr 724 . . . . . . . 8 (((𝑢 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ suc 𝐵𝑢) → (((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝑢)) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹‘suc 𝑢))))
3310, 13, 16, 19, 25, 32findsg 7609 . . . . . . 7 (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ suc 𝐵𝐴) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴)))
3433ex 415 . . . . . 6 ((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) → (suc 𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
357, 34sylan2b 595 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
366, 35syld 47 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝐴 → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
3736impancom 454 . . 3 ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐵 ∈ ω → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴))))
382, 37mpd 15 . 2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → (𝐹𝐵) ⊊ (𝐹𝐴)))
3938com12 32 1 ((𝑥 ≠ ∅ ∧ 𝑥 𝑥) → ((𝐴 ∈ ω ∧ 𝐵𝐴) → (𝐹𝐵) ⊊ (𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  {crab 3142  Vcvv 3494  cin 3935  wss 3936  wpss 3937  c0 4291   cuni 4838  cmpt 5146  cres 5557  Ord word 6190  suc csuc 6193  cfv 6355  ωcom 7580  reccrdg 8045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-reg 9056
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046
This theorem is referenced by:  inf3lem6  9096
  Copyright terms: Public domain W3C validator