MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano2b Structured version   Visualization version   GIF version

Theorem peano2b 7028
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.)
Assertion
Ref Expression
peano2b (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)

Proof of Theorem peano2b
StepHypRef Expression
1 limom 7027 . 2 Lim ω
2 limsuc 6996 . 2 (Lim ω → (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω))
31, 2ax-mp 5 1 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wcel 1987  Lim wlim 5683  suc csuc 5684  ωcom 7012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-tr 4713  df-eprel 4985  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-om 7013
This theorem is referenced by:  nnsuc  7029  peano2  7033  peano5  7036  frsuc  7477  frsucmptn  7479  nnaordi  7643  nnmsucr  7650  omsmolem  7678  php  8088  php4  8091  unblem1  8156  isfinite2  8162  inf0  8462  inf3lem1  8469  inf3lem5  8473  cantnfp1lem3  8521  cantnflem1  8530  itunisuc  9185  ituniiun  9188  indpi  9673  rdgeqoa  32850
  Copyright terms: Public domain W3C validator