MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssr Structured version   Visualization version   GIF version

Theorem infpssr 9075
Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infpssr ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴)

Proof of Theorem infpssr
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 4016 . . 3 (𝑋𝐴 → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋))
21adantr 481 . 2 ((𝑋𝐴𝑋𝐴) → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋))
3 eldif 3570 . . . 4 (𝑦 ∈ (𝐴𝑋) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝑋))
4 pssss 3685 . . . . . 6 (𝑋𝐴𝑋𝐴)
5 bren 7909 . . . . . . . 8 (𝑋𝐴 ↔ ∃𝑓 𝑓:𝑋1-1-onto𝐴)
6 simpr 477 . . . . . . . . . . . . 13 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑓:𝑋1-1-onto𝐴)
7 f1ofo 6103 . . . . . . . . . . . . 13 (𝑓:𝑋1-1-onto𝐴𝑓:𝑋onto𝐴)
8 forn 6077 . . . . . . . . . . . . 13 (𝑓:𝑋onto𝐴 → ran 𝑓 = 𝐴)
96, 7, 83syl 18 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → ran 𝑓 = 𝐴)
10 vex 3194 . . . . . . . . . . . . 13 𝑓 ∈ V
1110rnex 7048 . . . . . . . . . . . 12 ran 𝑓 ∈ V
129, 11syl6eqelr 2713 . . . . . . . . . . 11 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝐴 ∈ V)
13 simplr 791 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑋𝐴)
14 simpll 789 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑦 ∈ (𝐴𝑋))
15 eqid 2626 . . . . . . . . . . . 12 (rec(𝑓, 𝑦) ↾ ω) = (rec(𝑓, 𝑦) ↾ ω)
1613, 6, 14, 15infpssrlem5 9074 . . . . . . . . . . 11 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → (𝐴 ∈ V → ω ≼ 𝐴))
1712, 16mpd 15 . . . . . . . . . 10 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → ω ≼ 𝐴)
1817ex 450 . . . . . . . . 9 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (𝑓:𝑋1-1-onto𝐴 → ω ≼ 𝐴))
1918exlimdv 1863 . . . . . . . 8 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (∃𝑓 𝑓:𝑋1-1-onto𝐴 → ω ≼ 𝐴))
205, 19syl5bi 232 . . . . . . 7 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (𝑋𝐴 → ω ≼ 𝐴))
2120ex 450 . . . . . 6 (𝑦 ∈ (𝐴𝑋) → (𝑋𝐴 → (𝑋𝐴 → ω ≼ 𝐴)))
224, 21syl5 34 . . . . 5 (𝑦 ∈ (𝐴𝑋) → (𝑋𝐴 → (𝑋𝐴 → ω ≼ 𝐴)))
2322impd 447 . . . 4 (𝑦 ∈ (𝐴𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
243, 23sylbir 225 . . 3 ((𝑦𝐴 ∧ ¬ 𝑦𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
2524exlimiv 1860 . 2 (∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
262, 25mpcom 38 1 ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1992  Vcvv 3191  cdif 3557  wss 3560  wpss 3561   class class class wbr 4618  ccnv 5078  ran crn 5080  cres 5081  ontowfo 5848  1-1-ontowf1o 5849  ωcom 7013  reccrdg 7451  cen 7897  cdom 7898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-om 7014  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-en 7901  df-dom 7902
This theorem is referenced by:  isfin4-2  9081
  Copyright terms: Public domain W3C validator