MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrab2 Structured version   Visualization version   GIF version

Theorem inrab2 3876
Description: Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.)
Assertion
Ref Expression
inrab2 ({𝑥𝐴𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem inrab2
StepHypRef Expression
1 df-rab 2916 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 abid1 2741 . . 3 𝐵 = {𝑥𝑥𝐵}
31, 2ineq12i 3790 . 2 ({𝑥𝐴𝜑} ∩ 𝐵) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵})
4 df-rab 2916 . . 3 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
5 inab 3871 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ 𝑥𝐵)}
6 elin 3774 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
76anbi1i 730 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
8 an32 838 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∧ 𝑥𝐵))
97, 8bitri 264 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∧ 𝑥𝐵))
109abbii 2736 . . . 4 {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ 𝑥𝐵)}
115, 10eqtr4i 2646 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵}) = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
124, 11eqtr4i 2646 . 2 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∩ {𝑥𝑥𝐵})
133, 12eqtr4i 2646 1 ({𝑥𝐴𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1480  wcel 1987  {cab 2607  {crab 2911  cin 3554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2916  df-v 3188  df-in 3562
This theorem is referenced by:  iooval2  12150  fzval2  12271  smuval2  15128  smueqlem  15136  dfphi2  15403  ordtrest  20916  ordtrest2lem  20917  ordtrestNEW  29749  ordtrest2NEWlem  29750  itg2addnclem2  33094  dmatALTbas  41478
  Copyright terms: Public domain W3C validator