Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islvol2aN Structured version   Visualization version   GIF version

Theorem islvol2aN 36743
Description: The predicate "is a lattice volume". (Contributed by NM, 16-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
islvol2a.l = (le‘𝐾)
islvol2a.j = (join‘𝐾)
islvol2a.a 𝐴 = (Atoms‘𝐾)
islvol2a.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
islvol2aN (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))

Proof of Theorem islvol2aN
StepHypRef Expression
1 oveq1 7163 . . . . . . . . 9 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
2 simpl1 1187 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ HL)
3 simpl3 1189 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝐴)
4 islvol2a.j . . . . . . . . . . 11 = (join‘𝐾)
5 islvol2a.a . . . . . . . . . . 11 𝐴 = (Atoms‘𝐾)
64, 5hlatjidm 36520 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
72, 3, 6syl2anc 586 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑄 𝑄) = 𝑄)
81, 7sylan9eqr 2878 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
98oveq1d 7171 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) 𝑅) = (𝑄 𝑅))
109oveq1d 7171 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑄 𝑅) 𝑆))
11 simprl 769 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
12 simprr 771 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
13 islvol2a.v . . . . . . . . 9 𝑉 = (LVols‘𝐾)
144, 5, 133atnelvolN 36737 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑆𝐴)) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑉)
152, 3, 11, 12, 14syl13anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑉)
1615adantr 483 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → ¬ ((𝑄 𝑅) 𝑆) ∈ 𝑉)
1710, 16eqneltrd 2932 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) ∧ 𝑃 = 𝑄) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
1817ex 415 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 = 𝑄 → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
1918necon2ad 3031 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉𝑃𝑄))
202hllatd 36515 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
21 eqid 2821 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
2221, 5atbase 36440 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
2322ad2antrl 726 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅 ∈ (Base‘𝐾))
2421, 4, 5hlatjcl 36518 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
2524adantr 483 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
26 islvol2a.l . . . . . . 7 = (le‘𝐾)
2721, 26, 4latleeqj2 17674 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
2820, 23, 25, 27syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 (𝑃 𝑄) ↔ ((𝑃 𝑄) 𝑅) = (𝑃 𝑄)))
29 simpl2 1188 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝐴)
304, 5, 133atnelvolN 36737 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → ¬ ((𝑃 𝑄) 𝑆) ∈ 𝑉)
312, 29, 3, 12, 30syl13anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ¬ ((𝑃 𝑄) 𝑆) ∈ 𝑉)
32 oveq1 7163 . . . . . . . 8 (((𝑃 𝑄) 𝑅) = (𝑃 𝑄) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑆))
3332eleq1d 2897 . . . . . . 7 (((𝑃 𝑄) 𝑅) = (𝑃 𝑄) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ((𝑃 𝑄) 𝑆) ∈ 𝑉))
3433notbid 320 . . . . . 6 (((𝑃 𝑄) 𝑅) = (𝑃 𝑄) → (¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ¬ ((𝑃 𝑄) 𝑆) ∈ 𝑉))
3531, 34syl5ibrcom 249 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (((𝑃 𝑄) 𝑅) = (𝑃 𝑄) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
3628, 35sylbid 242 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑅 (𝑃 𝑄) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
3736con2d 136 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 → ¬ 𝑅 (𝑃 𝑄)))
3821, 5atbase 36440 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
3938ad2antll 727 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆 ∈ (Base‘𝐾))
4021, 4latjcl 17661 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
4120, 25, 23, 40syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾))
4221, 26, 4latleeqj2 17674 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑃 𝑄) 𝑅) ∈ (Base‘𝐾)) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
4320, 39, 41, 42syl3anc 1367 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑆 ((𝑃 𝑄) 𝑅) ↔ (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅)))
444, 5, 133atnelvolN 36737 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑉)
452, 29, 3, 11, 44syl13anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑉)
46 eleq1 2900 . . . . . . 7 ((((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ((𝑃 𝑄) 𝑅) ∈ 𝑉))
4746notbid 320 . . . . . 6 ((((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅) → (¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑉))
4845, 47syl5ibrcom 249 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) 𝑅) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
4943, 48sylbid 242 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → (𝑆 ((𝑃 𝑄) 𝑅) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
5049con2d 136 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 → ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
5119, 37, 503jcad 1125 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))
5226, 4, 5, 13lvoli2 36732 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉)
53523expia 1117 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉))
5451, 53impbid 214 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((((𝑃 𝑄) 𝑅) 𝑆) ∈ 𝑉 ↔ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  Latclat 17655  Atomscatm 36414  HLchlt 36501  LVolsclvol 36644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-llines 36649  df-lplanes 36650  df-lvols 36651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator