MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunconnlem Structured version   Visualization version   GIF version

Theorem iunconnlem 21211
Description: Lemma for iunconn 21212. (Contributed by Mario Carneiro, 11-Jun-2014.)
Hypotheses
Ref Expression
iunconn.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconn.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconn.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconn.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
iunconn.6 (𝜑𝑈𝐽)
iunconn.7 (𝜑𝑉𝐽)
iunconn.8 (𝜑 → (𝑉 𝑘𝐴 𝐵) ≠ ∅)
iunconn.9 (𝜑 → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
iunconn.10 (𝜑 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
iunconn.11 𝑘𝜑
Assertion
Ref Expression
iunconnlem (𝜑 → ¬ 𝑃𝑈)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑃,𝑘   𝑘,𝑋   𝑈,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem iunconnlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iunconn.8 . . 3 (𝜑 → (𝑉 𝑘𝐴 𝐵) ≠ ∅)
2 n0 3923 . . 3 ((𝑉 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵))
31, 2sylib 208 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵))
4 elin 3788 . . . 4 (𝑥 ∈ (𝑉 𝑘𝐴 𝐵) ↔ (𝑥𝑉𝑥 𝑘𝐴 𝐵))
5 eliun 4515 . . . . . 6 (𝑥 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑥𝐵)
6 iunconn.11 . . . . . . . 8 𝑘𝜑
7 nfv 1841 . . . . . . . 8 𝑘 𝑥𝑉
86, 7nfan 1826 . . . . . . 7 𝑘(𝜑𝑥𝑉)
9 nfv 1841 . . . . . . 7 𝑘 ¬ 𝑃𝑈
10 iunconn.5 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
1110adantr 481 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → (𝐽t 𝐵) ∈ Conn)
12 iunconn.2 . . . . . . . . . . . . 13 (𝜑𝐽 ∈ (TopOn‘𝑋))
1312ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐽 ∈ (TopOn‘𝑋))
14 iunconn.3 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵𝑋)
1514adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵𝑋)
16 iunconn.6 . . . . . . . . . . . . 13 (𝜑𝑈𝐽)
1716ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑈𝐽)
18 iunconn.7 . . . . . . . . . . . . 13 (𝜑𝑉𝐽)
1918ad2antrr 761 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑉𝐽)
20 simprr 795 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑃𝑈)
21 iunconn.4 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝑃𝐵)
2221adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑃𝐵)
23 inelcm 4023 . . . . . . . . . . . . 13 ((𝑃𝑈𝑃𝐵) → (𝑈𝐵) ≠ ∅)
2420, 22, 23syl2anc 692 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝐵) ≠ ∅)
25 inelcm 4023 . . . . . . . . . . . . 13 ((𝑥𝑉𝑥𝐵) → (𝑉𝐵) ≠ ∅)
2625ad2antrl 763 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑉𝐵) ≠ ∅)
27 iunconn.9 . . . . . . . . . . . . . . 15 (𝜑 → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
2827ad2antrr 761 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ (𝑋 𝑘𝐴 𝐵))
29 ssiun2 4554 . . . . . . . . . . . . . . . 16 (𝑘𝐴𝐵 𝑘𝐴 𝐵)
3029ad2antlr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵 𝑘𝐴 𝐵)
3130sscond 3739 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑋 𝑘𝐴 𝐵) ⊆ (𝑋𝐵))
3228, 31sstrd 3605 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ (𝑋𝐵))
33 inss1 3825 . . . . . . . . . . . . . . 15 (𝑈𝑉) ⊆ 𝑈
34 toponss 20712 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝑋)
3513, 17, 34syl2anc 692 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑈𝑋)
3633, 35syl5ss 3606 . . . . . . . . . . . . . 14 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (𝑈𝑉) ⊆ 𝑋)
37 reldisj 4011 . . . . . . . . . . . . . 14 ((𝑈𝑉) ⊆ 𝑋 → (((𝑈𝑉) ∩ 𝐵) = ∅ ↔ (𝑈𝑉) ⊆ (𝑋𝐵)))
3836, 37syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → (((𝑈𝑉) ∩ 𝐵) = ∅ ↔ (𝑈𝑉) ⊆ (𝑋𝐵)))
3932, 38mpbird 247 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → ((𝑈𝑉) ∩ 𝐵) = ∅)
40 iunconn.10 . . . . . . . . . . . . . 14 (𝜑 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
4140ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝑘𝐴 𝐵 ⊆ (𝑈𝑉))
4230, 41sstrd 3605 . . . . . . . . . . . 12 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → 𝐵 ⊆ (𝑈𝑉))
4313, 15, 17, 19, 24, 26, 39, 42nconnsubb 21207 . . . . . . . . . . 11 (((𝜑𝑘𝐴) ∧ ((𝑥𝑉𝑥𝐵) ∧ 𝑃𝑈)) → ¬ (𝐽t 𝐵) ∈ Conn)
4443expr 642 . . . . . . . . . 10 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → (𝑃𝑈 → ¬ (𝐽t 𝐵) ∈ Conn))
4511, 44mt2d 131 . . . . . . . . 9 (((𝜑𝑘𝐴) ∧ (𝑥𝑉𝑥𝐵)) → ¬ 𝑃𝑈)
4645an4s 868 . . . . . . . 8 (((𝜑𝑥𝑉) ∧ (𝑘𝐴𝑥𝐵)) → ¬ 𝑃𝑈)
4746exp32 630 . . . . . . 7 ((𝜑𝑥𝑉) → (𝑘𝐴 → (𝑥𝐵 → ¬ 𝑃𝑈)))
488, 9, 47rexlimd 3022 . . . . . 6 ((𝜑𝑥𝑉) → (∃𝑘𝐴 𝑥𝐵 → ¬ 𝑃𝑈))
495, 48syl5bi 232 . . . . 5 ((𝜑𝑥𝑉) → (𝑥 𝑘𝐴 𝐵 → ¬ 𝑃𝑈))
5049expimpd 628 . . . 4 (𝜑 → ((𝑥𝑉𝑥 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
514, 50syl5bi 232 . . 3 (𝜑 → (𝑥 ∈ (𝑉 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
5251exlimdv 1859 . 2 (𝜑 → (∃𝑥 𝑥 ∈ (𝑉 𝑘𝐴 𝐵) → ¬ 𝑃𝑈))
533, 52mpd 15 1 (𝜑 → ¬ 𝑃𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1481  wex 1702  wnf 1706  wcel 1988  wne 2791  wrex 2910  cdif 3564  cun 3565  cin 3566  wss 3567  c0 3907   ciun 4511  cfv 5876  (class class class)co 6635  t crest 16062  TopOnctopon 20696  Conncconn 21195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-oadd 7549  df-er 7727  df-en 7941  df-fin 7944  df-fi 8302  df-rest 16064  df-topgen 16085  df-top 20680  df-topon 20697  df-bases 20731  df-cld 20804  df-conn 21196
This theorem is referenced by:  iunconn  21212  iunconnlem2  38991
  Copyright terms: Public domain W3C validator