Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunmapsn Structured version   Visualization version   GIF version

Theorem iunmapsn 41500
Description: The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
iunmapsn.x 𝑥𝜑
iunmapsn.a (𝜑𝐴𝑉)
iunmapsn.b ((𝜑𝑥𝐴) → 𝐵𝑊)
iunmapsn.c (𝜑𝐶𝑍)
Assertion
Ref Expression
iunmapsn (𝜑 𝑥𝐴 (𝐵m {𝐶}) = ( 𝑥𝐴 𝐵m {𝐶}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑍(𝑥)

Proof of Theorem iunmapsn
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunmapsn.x . . 3 𝑥𝜑
2 iunmapsn.a . . 3 (𝜑𝐴𝑉)
3 iunmapsn.b . . 3 ((𝜑𝑥𝐴) → 𝐵𝑊)
41, 2, 3iunmapss 41498 . 2 (𝜑 𝑥𝐴 (𝐵m {𝐶}) ⊆ ( 𝑥𝐴 𝐵m {𝐶}))
5 simpr 487 . . . . . 6 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → 𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶}))
63ex 415 . . . . . . . . . 10 (𝜑 → (𝑥𝐴𝐵𝑊))
71, 6ralrimi 3216 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝐵𝑊)
8 iunexg 7664 . . . . . . . . 9 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐵𝑊) → 𝑥𝐴 𝐵 ∈ V)
92, 7, 8syl2anc 586 . . . . . . . 8 (𝜑 𝑥𝐴 𝐵 ∈ V)
10 iunmapsn.c . . . . . . . 8 (𝜑𝐶𝑍)
119, 10mapsnd 8450 . . . . . . 7 (𝜑 → ( 𝑥𝐴 𝐵m {𝐶}) = {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
1211adantr 483 . . . . . 6 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → ( 𝑥𝐴 𝐵m {𝐶}) = {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
135, 12eleqtrd 2915 . . . . 5 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → 𝑓 ∈ {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}})
14 abid 2803 . . . . 5 (𝑓 ∈ {𝑓 ∣ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}} ↔ ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
1513, 14sylib 220 . . . 4 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → ∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
16 eliun 4923 . . . . . . . . . 10 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
1716biimpi 218 . . . . . . . . 9 (𝑦 𝑥𝐴 𝐵 → ∃𝑥𝐴 𝑦𝐵)
18173ad2ant2 1130 . . . . . . . 8 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑥𝐴 𝑦𝐵)
19 nfcv 2977 . . . . . . . . . . 11 𝑥𝑦
20 nfiu1 4953 . . . . . . . . . . 11 𝑥 𝑥𝐴 𝐵
2119, 20nfel 2992 . . . . . . . . . 10 𝑥 𝑦 𝑥𝐴 𝐵
22 nfv 1915 . . . . . . . . . 10 𝑥 𝑓 = {⟨𝐶, 𝑦⟩}
231, 21, 22nf3an 1902 . . . . . . . . 9 𝑥(𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩})
24 rspe 3304 . . . . . . . . . . . . . . . 16 ((𝑦𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
2524ancoms 461 . . . . . . . . . . . . . . 15 ((𝑓 = {⟨𝐶, 𝑦⟩} ∧ 𝑦𝐵) → ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
26 abid 2803 . . . . . . . . . . . . . . 15 (𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} ↔ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩})
2725, 26sylibr 236 . . . . . . . . . . . . . 14 ((𝑓 = {⟨𝐶, 𝑦⟩} ∧ 𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
2827adantll 712 . . . . . . . . . . . . 13 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
29283adant2 1127 . . . . . . . . . . . 12 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → 𝑓 ∈ {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
3010adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → 𝐶𝑍)
313, 30mapsnd 8450 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝐵m {𝐶}) = {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}})
3231eqcomd 2827 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵m {𝐶}))
33323adant3 1128 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑦𝐵) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵m {𝐶}))
34333adant1r 1173 . . . . . . . . . . . 12 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → {𝑓 ∣ ∃𝑦𝐵 𝑓 = {⟨𝐶, 𝑦⟩}} = (𝐵m {𝐶}))
3529, 34eleqtrd 2915 . . . . . . . . . . 11 (((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) ∧ 𝑥𝐴𝑦𝐵) → 𝑓 ∈ (𝐵m {𝐶}))
36353exp 1115 . . . . . . . . . 10 ((𝜑𝑓 = {⟨𝐶, 𝑦⟩}) → (𝑥𝐴 → (𝑦𝐵𝑓 ∈ (𝐵m {𝐶}))))
37363adant2 1127 . . . . . . . . 9 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → (𝑥𝐴 → (𝑦𝐵𝑓 ∈ (𝐵m {𝐶}))))
3823, 37reximdai 3311 . . . . . . . 8 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → (∃𝑥𝐴 𝑦𝐵 → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶})))
3918, 38mpd 15 . . . . . . 7 ((𝜑𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩}) → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))
40393exp 1115 . . . . . 6 (𝜑 → (𝑦 𝑥𝐴 𝐵 → (𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))))
4140rexlimdv 3283 . . . . 5 (𝜑 → (∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶})))
4241adantr 483 . . . 4 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → (∃𝑦 𝑥𝐴 𝐵𝑓 = {⟨𝐶, 𝑦⟩} → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶})))
4315, 42mpd 15 . . 3 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))
44 eliun 4923 . . 3 (𝑓 𝑥𝐴 (𝐵m {𝐶}) ↔ ∃𝑥𝐴 𝑓 ∈ (𝐵m {𝐶}))
4543, 44sylibr 236 . 2 ((𝜑𝑓 ∈ ( 𝑥𝐴 𝐵m {𝐶})) → 𝑓 𝑥𝐴 (𝐵m {𝐶}))
464, 45eqelssd 3988 1 (𝜑 𝑥𝐴 (𝐵m {𝐶}) = ( 𝑥𝐴 𝐵m {𝐶}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wnf 1784  wcel 2114  {cab 2799  wral 3138  wrex 3139  Vcvv 3494  {csn 4567  cop 4573   ciun 4919  (class class class)co 7156  m cmap 8406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-map 8408
This theorem is referenced by:  ovnovollem1  42958  ovnovollem2  42959
  Copyright terms: Public domain W3C validator