Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssmapsn Structured version   Visualization version   GIF version

Theorem ssmapsn 41499
Description: A subset 𝐶 of a set exponentiation to a singleton, is its projection 𝐷 exponentiated to the singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ssmapsn.f 𝑓𝐷
ssmapsn.a (𝜑𝐴𝑉)
ssmapsn.c (𝜑𝐶 ⊆ (𝐵m {𝐴}))
ssmapsn.d 𝐷 = 𝑓𝐶 ran 𝑓
Assertion
Ref Expression
ssmapsn (𝜑𝐶 = (𝐷m {𝐴}))
Distinct variable groups:   𝐴,𝑓   𝐶,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐵(𝑓)   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem ssmapsn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ssmapsn.c . . . . . . . . 9 (𝜑𝐶 ⊆ (𝐵m {𝐴}))
21sselda 3967 . . . . . . . 8 ((𝜑𝑓𝐶) → 𝑓 ∈ (𝐵m {𝐴}))
3 elmapi 8428 . . . . . . . 8 (𝑓 ∈ (𝐵m {𝐴}) → 𝑓:{𝐴}⟶𝐵)
42, 3syl 17 . . . . . . 7 ((𝜑𝑓𝐶) → 𝑓:{𝐴}⟶𝐵)
54ffnd 6515 . . . . . 6 ((𝜑𝑓𝐶) → 𝑓 Fn {𝐴})
6 ssmapsn.d . . . . . . . . 9 𝐷 = 𝑓𝐶 ran 𝑓
76a1i 11 . . . . . . . 8 (𝜑𝐷 = 𝑓𝐶 ran 𝑓)
8 ovexd 7191 . . . . . . . . . . 11 (𝜑 → (𝐵m {𝐴}) ∈ V)
98, 1ssexd 5228 . . . . . . . . . 10 (𝜑𝐶 ∈ V)
10 rnexg 7614 . . . . . . . . . . . 12 (𝑓𝐶 → ran 𝑓 ∈ V)
1110rgen 3148 . . . . . . . . . . 11 𝑓𝐶 ran 𝑓 ∈ V
1211a1i 11 . . . . . . . . . 10 (𝜑 → ∀𝑓𝐶 ran 𝑓 ∈ V)
139, 12jca 514 . . . . . . . . 9 (𝜑 → (𝐶 ∈ V ∧ ∀𝑓𝐶 ran 𝑓 ∈ V))
14 iunexg 7664 . . . . . . . . 9 ((𝐶 ∈ V ∧ ∀𝑓𝐶 ran 𝑓 ∈ V) → 𝑓𝐶 ran 𝑓 ∈ V)
1513, 14syl 17 . . . . . . . 8 (𝜑 𝑓𝐶 ran 𝑓 ∈ V)
167, 15eqeltrd 2913 . . . . . . 7 (𝜑𝐷 ∈ V)
1716adantr 483 . . . . . 6 ((𝜑𝑓𝐶) → 𝐷 ∈ V)
18 ssiun2 4971 . . . . . . . . 9 (𝑓𝐶 → ran 𝑓 𝑓𝐶 ran 𝑓)
1918adantl 484 . . . . . . . 8 ((𝜑𝑓𝐶) → ran 𝑓 𝑓𝐶 ran 𝑓)
20 ssmapsn.a . . . . . . . . . . 11 (𝜑𝐴𝑉)
21 snidg 4599 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ {𝐴})
2220, 21syl 17 . . . . . . . . . 10 (𝜑𝐴 ∈ {𝐴})
2322adantr 483 . . . . . . . . 9 ((𝜑𝑓𝐶) → 𝐴 ∈ {𝐴})
24 fnfvelrn 6848 . . . . . . . . 9 ((𝑓 Fn {𝐴} ∧ 𝐴 ∈ {𝐴}) → (𝑓𝐴) ∈ ran 𝑓)
255, 23, 24syl2anc 586 . . . . . . . 8 ((𝜑𝑓𝐶) → (𝑓𝐴) ∈ ran 𝑓)
2619, 25sseldd 3968 . . . . . . 7 ((𝜑𝑓𝐶) → (𝑓𝐴) ∈ 𝑓𝐶 ran 𝑓)
2726, 6eleqtrrdi 2924 . . . . . 6 ((𝜑𝑓𝐶) → (𝑓𝐴) ∈ 𝐷)
285, 17, 27elmapsnd 41487 . . . . 5 ((𝜑𝑓𝐶) → 𝑓 ∈ (𝐷m {𝐴}))
2928ex 415 . . . 4 (𝜑 → (𝑓𝐶𝑓 ∈ (𝐷m {𝐴})))
3016adantr 483 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → 𝐷 ∈ V)
31 snex 5332 . . . . . . . . . 10 {𝐴} ∈ V
3231a1i 11 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → {𝐴} ∈ V)
33 simpr 487 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → 𝑓 ∈ (𝐷m {𝐴}))
3422adantr 483 . . . . . . . . 9 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → 𝐴 ∈ {𝐴})
3530, 32, 33, 34fvmap 41480 . . . . . . . 8 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → (𝑓𝐴) ∈ 𝐷)
366idi 1 . . . . . . . . 9 𝐷 = 𝑓𝐶 ran 𝑓
37 rneq 5806 . . . . . . . . . 10 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
3837cbviunv 4965 . . . . . . . . 9 𝑓𝐶 ran 𝑓 = 𝑔𝐶 ran 𝑔
3936, 38eqtri 2844 . . . . . . . 8 𝐷 = 𝑔𝐶 ran 𝑔
4035, 39eleqtrdi 2923 . . . . . . 7 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → (𝑓𝐴) ∈ 𝑔𝐶 ran 𝑔)
41 eliun 4923 . . . . . . 7 ((𝑓𝐴) ∈ 𝑔𝐶 ran 𝑔 ↔ ∃𝑔𝐶 (𝑓𝐴) ∈ ran 𝑔)
4240, 41sylib 220 . . . . . 6 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → ∃𝑔𝐶 (𝑓𝐴) ∈ ran 𝑔)
43 simp3 1134 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → (𝑓𝐴) ∈ ran 𝑔)
44 simp1l 1193 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝜑)
4544, 20syl 17 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝐴𝑉)
46 eqid 2821 . . . . . . . . . . 11 {𝐴} = {𝐴}
47 simp1r 1194 . . . . . . . . . . . 12 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓 ∈ (𝐷m {𝐴}))
48 elmapfn 8429 . . . . . . . . . . . 12 (𝑓 ∈ (𝐷m {𝐴}) → 𝑓 Fn {𝐴})
4947, 48syl 17 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓 Fn {𝐴})
501sselda 3967 . . . . . . . . . . . . . 14 ((𝜑𝑔𝐶) → 𝑔 ∈ (𝐵m {𝐴}))
51 elmapfn 8429 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝐵m {𝐴}) → 𝑔 Fn {𝐴})
5250, 51syl 17 . . . . . . . . . . . . 13 ((𝜑𝑔𝐶) → 𝑔 Fn {𝐴})
53523adant3 1128 . . . . . . . . . . . 12 ((𝜑𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴})
54533adant1r 1173 . . . . . . . . . . 11 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑔 Fn {𝐴})
5545, 46, 49, 54fsneqrn 41494 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → (𝑓 = 𝑔 ↔ (𝑓𝐴) ∈ ran 𝑔))
5643, 55mpbird 259 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓 = 𝑔)
57 simp2 1133 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑔𝐶)
5856, 57eqeltrd 2913 . . . . . . . 8 (((𝜑𝑓 ∈ (𝐷m {𝐴})) ∧ 𝑔𝐶 ∧ (𝑓𝐴) ∈ ran 𝑔) → 𝑓𝐶)
59583exp 1115 . . . . . . 7 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → (𝑔𝐶 → ((𝑓𝐴) ∈ ran 𝑔𝑓𝐶)))
6059rexlimdv 3283 . . . . . 6 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → (∃𝑔𝐶 (𝑓𝐴) ∈ ran 𝑔𝑓𝐶))
6142, 60mpd 15 . . . . 5 ((𝜑𝑓 ∈ (𝐷m {𝐴})) → 𝑓𝐶)
6261ex 415 . . . 4 (𝜑 → (𝑓 ∈ (𝐷m {𝐴}) → 𝑓𝐶))
6329, 62impbid 214 . . 3 (𝜑 → (𝑓𝐶𝑓 ∈ (𝐷m {𝐴})))
6463alrimiv 1928 . 2 (𝜑 → ∀𝑓(𝑓𝐶𝑓 ∈ (𝐷m {𝐴})))
65 nfcv 2977 . . 3 𝑓𝐶
66 ssmapsn.f . . . 4 𝑓𝐷
67 nfcv 2977 . . . 4 𝑓m
68 nfcv 2977 . . . 4 𝑓{𝐴}
6966, 67, 68nfov 7186 . . 3 𝑓(𝐷m {𝐴})
7065, 69cleqf 3010 . 2 (𝐶 = (𝐷m {𝐴}) ↔ ∀𝑓(𝑓𝐶𝑓 ∈ (𝐷m {𝐴})))
7164, 70sylibr 236 1 (𝜑𝐶 = (𝐷m {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wnfc 2961  wral 3138  wrex 3139  Vcvv 3494  wss 3936  {csn 4567   ciun 4919  ran crn 5556   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-map 8408
This theorem is referenced by:  vonvolmbllem  42962  vonvolmbl2  42965  vonvol2  42966
  Copyright terms: Public domain W3C validator