Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovnovollem1 Structured version   Visualization version   GIF version

Theorem ovnovollem1 43012
Description: if 𝐹 is a cover of 𝐵 in , then 𝐼 is the corresponding cover in the space of 1-dimensional reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovnovollem1.a (𝜑𝐴𝑉)
ovnovollem1.f (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
ovnovollem1.i 𝐼 = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝐹𝑗)⟩})
ovnovollem1.s (𝜑𝐵 ran ([,) ∘ 𝐹))
ovnovollem1.b (𝜑𝐵𝑊)
ovnovollem1.z (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
Assertion
Ref Expression
ovnovollem1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Distinct variable groups:   𝐴,𝑖,𝑗,𝑘   𝐵,𝑖   𝑗,𝐹,𝑘   𝑖,𝐼,𝑗,𝑘   𝑘,𝑉   𝑖,𝑍   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑖)   𝐵(𝑗,𝑘)   𝐹(𝑖)   𝑉(𝑖,𝑗)   𝑊(𝑖,𝑗,𝑘)   𝑍(𝑗,𝑘)

Proof of Theorem ovnovollem1
StepHypRef Expression
1 eqidd 2821 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩})
2 ovnovollem1.a . . . . . . . . 9 (𝜑𝐴𝑉)
32adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝐴𝑉)
4 ovnovollem1.f . . . . . . . . . 10 (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
5 elmapi 8421 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
64, 5syl 17 . . . . . . . . 9 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
76ffvelrnda 6844 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ (ℝ × ℝ))
8 fsng 6892 . . . . . . . 8 ((𝐴𝑉 ∧ (𝐹𝑗) ∈ (ℝ × ℝ)) → ({⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)} ↔ {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩}))
93, 7, 8syl2anc 586 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)} ↔ {⟨𝐴, (𝐹𝑗)⟩} = {⟨𝐴, (𝐹𝑗)⟩}))
101, 9mpbird 259 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶{(𝐹𝑗)})
117snssd 4735 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {(𝐹𝑗)} ⊆ (ℝ × ℝ))
1210, 11fssd 6521 . . . . 5 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶(ℝ × ℝ))
13 reex 10621 . . . . . . . 8 ℝ ∈ V
1413, 13xpex 7469 . . . . . . 7 (ℝ × ℝ) ∈ V
1514a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (ℝ × ℝ) ∈ V)
16 snex 5325 . . . . . . 7 {𝐴} ∈ V
1716a1i 11 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → {𝐴} ∈ V)
1815, 17elmapd 8413 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩} ∈ ((ℝ × ℝ) ↑m {𝐴}) ↔ {⟨𝐴, (𝐹𝑗)⟩}:{𝐴}⟶(ℝ × ℝ)))
1912, 18mpbird 259 . . . 4 ((𝜑𝑗 ∈ ℕ) → {⟨𝐴, (𝐹𝑗)⟩} ∈ ((ℝ × ℝ) ↑m {𝐴}))
20 ovnovollem1.i . . . 4 𝐼 = (𝑗 ∈ ℕ ↦ {⟨𝐴, (𝐹𝑗)⟩})
2119, 20fmptd 6871 . . 3 (𝜑𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴}))
22 ovexd 7184 . . . 4 (𝜑 → ((ℝ × ℝ) ↑m {𝐴}) ∈ V)
23 nnex 11637 . . . . 5 ℕ ∈ V
2423a1i 11 . . . 4 (𝜑 → ℕ ∈ V)
2522, 24elmapd 8413 . . 3 (𝜑 → (𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ↔ 𝐼:ℕ⟶((ℝ × ℝ) ↑m {𝐴})))
2621, 25mpbird 259 . 2 (𝜑𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ))
27 ovnovollem1.s . . . . . 6 (𝜑𝐵 ran ([,) ∘ 𝐹))
28 icof 41556 . . . . . . . . . . 11 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
2928a1i 11 . . . . . . . . . 10 (𝜑 → [,):(ℝ* × ℝ*)⟶𝒫 ℝ*)
30 rexpssxrxp 10679 . . . . . . . . . . 11 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
3130a1i 11 . . . . . . . . . 10 (𝜑 → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
3229, 31, 6fcoss 41547 . . . . . . . . 9 (𝜑 → ([,) ∘ 𝐹):ℕ⟶𝒫 ℝ*)
3332ffnd 6508 . . . . . . . 8 (𝜑 → ([,) ∘ 𝐹) Fn ℕ)
34 fniunfv 6999 . . . . . . . 8 (([,) ∘ 𝐹) Fn ℕ → 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
3533, 34syl 17 . . . . . . 7 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = ran ([,) ∘ 𝐹))
3635eqcomd 2826 . . . . . 6 (𝜑 ran ([,) ∘ 𝐹) = 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
3727, 36sseqtrd 4000 . . . . 5 (𝜑𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗))
38 ovnovollem1.b . . . . . 6 (𝜑𝐵𝑊)
39 fvex 6676 . . . . . . . 8 (([,) ∘ 𝐹)‘𝑗) ∈ V
4023, 39iunex 7662 . . . . . . 7 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V
4140a1i 11 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ∈ V)
4216a1i 11 . . . . . 6 (𝜑 → {𝐴} ∈ V)
432snn0d 41423 . . . . . 6 (𝜑 → {𝐴} ≠ ∅)
4438, 41, 42, 43mapss2 41542 . . . . 5 (𝜑 → (𝐵 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↔ (𝐵m {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴})))
4537, 44mpbid 234 . . . 4 (𝜑 → (𝐵m {𝐴}) ⊆ ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}))
46 nfv 1914 . . . . . . 7 𝑗𝜑
47 fvexd 6678 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → ([,)‘(𝐹𝑗)) ∈ V)
4846, 24, 47, 2iunmapsn 41554 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑m {𝐴}) = ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑m {𝐴}))
4948eqcomd 2826 . . . . 5 (𝜑 → ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑m {𝐴}) = 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑m {𝐴}))
50 elmapfun 8423 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → Fun 𝐹)
514, 50syl 17 . . . . . . . . 9 (𝜑 → Fun 𝐹)
5251adantr 483 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → Fun 𝐹)
53 simpr 487 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
546fdmd 6516 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = ℕ)
5554eqcomd 2826 . . . . . . . . . 10 (𝜑 → ℕ = dom 𝐹)
5655adantr 483 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → ℕ = dom 𝐹)
5753, 56eleqtrd 2914 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ dom 𝐹)
58 fvco 6752 . . . . . . . 8 ((Fun 𝐹𝑗 ∈ dom 𝐹) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
5952, 57, 58syl2anc 586 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑗) = ([,)‘(𝐹𝑗)))
6059iuneq2dv 4936 . . . . . 6 (𝜑 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) = 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)))
6160oveq1d 7164 . . . . 5 (𝜑 → ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = ( 𝑗 ∈ ℕ ([,)‘(𝐹𝑗)) ↑m {𝐴}))
6210ffund 6511 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → Fun {⟨𝐴, (𝐹𝑗)⟩})
63 id 22 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ)
64 snex 5325 . . . . . . . . . . . . . . . 16 {⟨𝐴, (𝐹𝑗)⟩} ∈ V
6564a1i 11 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → {⟨𝐴, (𝐹𝑗)⟩} ∈ V)
6620fvmpt2 6772 . . . . . . . . . . . . . . 15 ((𝑗 ∈ ℕ ∧ {⟨𝐴, (𝐹𝑗)⟩} ∈ V) → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6763, 65, 66syl2anc 586 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6867adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (𝐼𝑗) = {⟨𝐴, (𝐹𝑗)⟩})
6968funeqd 6370 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (Fun (𝐼𝑗) ↔ Fun {⟨𝐴, (𝐹𝑗)⟩}))
7062, 69mpbird 259 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → Fun (𝐼𝑗))
7170adantr 483 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → Fun (𝐼𝑗))
72 simpr 487 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ {𝐴})
7368dmeqd 5767 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = dom {⟨𝐴, (𝐹𝑗)⟩})
7410fdmd 6516 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
7573, 74eqtrd 2855 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → dom (𝐼𝑗) = {𝐴})
7675eleq2d 2897 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (𝑘 ∈ dom (𝐼𝑗) ↔ 𝑘 ∈ {𝐴}))
7776adantr 483 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (𝑘 ∈ dom (𝐼𝑗) ↔ 𝑘 ∈ {𝐴}))
7872, 77mpbird 259 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → 𝑘 ∈ dom (𝐼𝑗))
79 fvco 6752 . . . . . . . . . 10 ((Fun (𝐼𝑗) ∧ 𝑘 ∈ dom (𝐼𝑗)) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘((𝐼𝑗)‘𝑘)))
8071, 78, 79syl2anc 586 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘((𝐼𝑗)‘𝑘)))
8167fveq1d 6665 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((𝐼𝑗)‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘))
8281ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼𝑗)‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘))
83 elsni 4577 . . . . . . . . . . . . 13 (𝑘 ∈ {𝐴} → 𝑘 = 𝐴)
8483fveq2d 6667 . . . . . . . . . . . 12 (𝑘 ∈ {𝐴} → ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴))
8584adantl 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝑘) = ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴))
86 fvexd 6678 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑗) ∈ V)
87 fvsng 6935 . . . . . . . . . . . . 13 ((𝐴𝑉 ∧ (𝐹𝑗) ∈ V) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
882, 86, 87syl2anc 586 . . . . . . . . . . . 12 (𝜑 → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
8988ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
9082, 85, 893eqtrd 2859 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ((𝐼𝑗)‘𝑘) = (𝐹𝑗))
9190fveq2d 6667 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘((𝐼𝑗)‘𝑘)) = ([,)‘(𝐹𝑗)))
92 eqidd 2821 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → ([,)‘(𝐹𝑗)) = ([,)‘(𝐹𝑗)))
9380, 91, 923eqtrd 2859 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ {𝐴}) → (([,) ∘ (𝐼𝑗))‘𝑘) = ([,)‘(𝐹𝑗)))
9493ixpeq2dva 8469 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)))
95 fvex 6676 . . . . . . . . 9 ([,)‘(𝐹𝑗)) ∈ V
9616, 95ixpconst 8464 . . . . . . . 8 X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)) = (([,)‘(𝐹𝑗)) ↑m {𝐴})
9796a1i 11 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} ([,)‘(𝐹𝑗)) = (([,)‘(𝐹𝑗)) ↑m {𝐴}))
9894, 97eqtrd 2855 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = (([,)‘(𝐹𝑗)) ↑m {𝐴}))
9998iuneq2dv 4936 . . . . 5 (𝜑 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) = 𝑗 ∈ ℕ (([,)‘(𝐹𝑗)) ↑m {𝐴}))
10049, 61, 993eqtr4d 2865 . . . 4 (𝜑 → ( 𝑗 ∈ ℕ (([,) ∘ 𝐹)‘𝑗) ↑m {𝐴}) = 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
10145, 100sseqtrd 4000 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
102 ovnovollem1.z . . . 4 (𝜑𝑍 = (Σ^‘((vol ∘ [,)) ∘ 𝐹)))
103 nfcv 2976 . . . . . . 7 𝑗𝐹
104 ressxr 10678 . . . . . . . . . 10 ℝ ⊆ ℝ*
105 xpss2 5568 . . . . . . . . . 10 (ℝ ⊆ ℝ* → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
106104, 105ax-mp 5 . . . . . . . . 9 (ℝ × ℝ) ⊆ (ℝ × ℝ*)
107106a1i 11 . . . . . . . 8 (𝜑 → (ℝ × ℝ) ⊆ (ℝ × ℝ*))
1086, 107fssd 6521 . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ × ℝ*))
109103, 108volicofmpt 42356 . . . . . 6 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))))
11067coeq2d 5726 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → ([,) ∘ (𝐼𝑗)) = ([,) ∘ {⟨𝐴, (𝐹𝑗)⟩}))
111110fveq1d 6665 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → (([,) ∘ (𝐼𝑗))‘𝐴) = (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴))
112111adantl 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴))
113 snidg 4592 . . . . . . . . . . . . . . . . 17 (𝐴𝑉𝐴 ∈ {𝐴})
1142, 113syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ∈ {𝐴})
115 dmsnopg 6063 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ∈ V → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
11686, 115syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → dom {⟨𝐴, (𝐹𝑗)⟩} = {𝐴})
117114, 116eleqtrrd 2915 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩})
118117adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → 𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩})
119 fvco 6752 . . . . . . . . . . . . . 14 ((Fun {⟨𝐴, (𝐹𝑗)⟩} ∧ 𝐴 ∈ dom {⟨𝐴, (𝐹𝑗)⟩}) → (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴) = ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)))
12062, 118, 119syl2anc 586 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ {⟨𝐴, (𝐹𝑗)⟩})‘𝐴) = ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)))
121 fvexd 6678 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) ∈ V)
1223, 121, 87syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = (𝐹𝑗))
123 1st2nd2 7721 . . . . . . . . . . . . . . . . 17 ((𝐹𝑗) ∈ (ℝ × ℝ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
1247, 123syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ) → (𝐹𝑗) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
125122, 124eqtrd 2855 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ) → ({⟨𝐴, (𝐹𝑗)⟩}‘𝐴) = ⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
126125fveq2d 6667 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩))
127 df-ov 7152 . . . . . . . . . . . . . . . 16 ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))) = ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩)
128127eqcomi 2829 . . . . . . . . . . . . . . 15 ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))
129128a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ) → ([,)‘⟨(1st ‘(𝐹𝑗)), (2nd ‘(𝐹𝑗))⟩) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
130126, 129eqtrd 2855 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℕ) → ([,)‘({⟨𝐴, (𝐹𝑗)⟩}‘𝐴)) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
131112, 120, 1303eqtrd 2859 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (([,) ∘ (𝐼𝑗))‘𝐴) = ((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))
132131fveq2d 6667 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) = (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))))
133 xp1st 7714 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
1347, 133syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (1st ‘(𝐹𝑗)) ∈ ℝ)
135 xp2nd 7715 . . . . . . . . . . . . 13 ((𝐹𝑗) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
1367, 135syl 17 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℕ) → (2nd ‘(𝐹𝑗)) ∈ ℝ)
137 volicore 42937 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑗)) ∈ ℝ ∧ (2nd ‘(𝐹𝑗)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
138134, 136, 137syl2anc 586 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) ∈ ℝ)
139132, 138eqeltrd 2912 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℝ)
140139recnd 10662 . . . . . . . . 9 ((𝜑𝑗 ∈ ℕ) → (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ)
141 2fveq3 6668 . . . . . . . . . 10 (𝑘 = 𝐴 → (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
142141prodsn 15311 . . . . . . . . 9 ((𝐴𝑉 ∧ (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)) ∈ ℂ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
1433, 140, 142syl2anc 586 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝐴)))
144143, 132eqtr2d 2856 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗)))) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
145144mpteq2dva 5154 . . . . . 6 (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((1st ‘(𝐹𝑗))[,)(2nd ‘(𝐹𝑗))))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
146109, 145eqtrd 2855 . . . . 5 (𝜑 → ((vol ∘ [,)) ∘ 𝐹) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
147146fveq2d 6667 . . . 4 (𝜑 → (Σ^‘((vol ∘ [,)) ∘ 𝐹)) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
148102, 147eqtrd 2855 . . 3 (𝜑𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
149101, 148jca 514 . 2 (𝜑 → ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
150 fveq1 6662 . . . . . . . . 9 (𝑖 = 𝐼 → (𝑖𝑗) = (𝐼𝑗))
151150coeq2d 5726 . . . . . . . 8 (𝑖 = 𝐼 → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
152151fveq1d 6665 . . . . . . 7 (𝑖 = 𝐼 → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
153152ixpeq2dv 8470 . . . . . 6 (𝑖 = 𝐼X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
154153iuneq2d 4941 . . . . 5 (𝑖 = 𝐼 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) = 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘))
155154sseq2d 3992 . . . 4 (𝑖 = 𝐼 → ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ↔ (𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘)))
156 simpl 485 . . . . . . . . . . . 12 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → 𝑖 = 𝐼)
157156fveq1d 6665 . . . . . . . . . . 11 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (𝑖𝑗) = (𝐼𝑗))
158157coeq2d 5726 . . . . . . . . . 10 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → ([,) ∘ (𝑖𝑗)) = ([,) ∘ (𝐼𝑗)))
159158fveq1d 6665 . . . . . . . . 9 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (([,) ∘ (𝑖𝑗))‘𝑘) = (([,) ∘ (𝐼𝑗))‘𝑘))
160159fveq2d 6667 . . . . . . . 8 ((𝑖 = 𝐼𝑘 ∈ {𝐴}) → (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
161160prodeq2dv 15272 . . . . . . 7 (𝑖 = 𝐼 → ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)) = ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))
162161mpteq2dv 5155 . . . . . 6 (𝑖 = 𝐼 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))
163162fveq2d 6667 . . . . 5 (𝑖 = 𝐼 → (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))
164163eqeq2d 2831 . . . 4 (𝑖 = 𝐼 → (𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))) ↔ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘))))))
165155, 164anbi12d 632 . . 3 (𝑖 = 𝐼 → (((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))) ↔ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))))
166165rspcev 3620 . 2 ((𝐼 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ) ∧ ((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝐼𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝐼𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
16726, 149, 166syl2anc 586 1 (𝜑 → ∃𝑖 ∈ (((ℝ × ℝ) ↑m {𝐴}) ↑m ℕ)((𝐵m {𝐴}) ⊆ 𝑗 ∈ ℕ X𝑘 ∈ {𝐴} (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑍 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ {𝐴} (vol‘(([,) ∘ (𝑖𝑗))‘𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3138  Vcvv 3491  wss 3929  𝒫 cpw 4532  {csn 4560  cop 4566   cuni 4831   ciun 4912  cmpt 5139   × cxp 5546  dom cdm 5548  ran crn 5549  ccom 5552  Fun wfun 6342   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7149  1st c1st 7680  2nd c2nd 7681  m cmap 8399  Xcixp 8454  cc 10528  cr 10529  *cxr 10667  cn 11631  [,)cico 12734  cprod 15254  volcvol 24059  Σ^csumge0 42718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-inf2 9097  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-of 7402  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-2o 8096  df-oadd 8099  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8455  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-fi 8868  df-sup 8899  df-inf 8900  df-oi 8967  df-dju 9323  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11632  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12890  df-fzo 13031  df-fl 13159  df-seq 13367  df-exp 13427  df-hash 13688  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-sum 15038  df-prod 15255  df-rest 16691  df-topgen 16712  df-psmet 20532  df-xmet 20533  df-met 20534  df-bl 20535  df-mopn 20536  df-top 21497  df-topon 21514  df-bases 21549  df-cmp 21990  df-ovol 24060  df-vol 24061
This theorem is referenced by:  ovnovollem3  43014
  Copyright terms: Public domain W3C validator