MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latj13 Structured version   Visualization version   GIF version

Theorem latj13 17291
Description: Swap 1st and 3rd members of lattice join. (Contributed by NM, 4-Jun-2012.)
Hypotheses
Ref Expression
latjass.b 𝐵 = (Base‘𝐾)
latjass.j = (join‘𝐾)
Assertion
Ref Expression
latj13 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑍 (𝑌 𝑋)))

Proof of Theorem latj13
StepHypRef Expression
1 simpl 474 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
2 simpr2 1233 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
3 simpr3 1235 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
4 simpr1 1231 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
5 latjass.b . . . 4 𝐵 = (Base‘𝐾)
6 latjass.j . . . 4 = (join‘𝐾)
75, 6latj32 17290 . . 3 ((𝐾 ∈ Lat ∧ (𝑌𝐵𝑍𝐵𝑋𝐵)) → ((𝑌 𝑍) 𝑋) = ((𝑌 𝑋) 𝑍))
81, 2, 3, 4, 7syl13anc 1475 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑌 𝑍) 𝑋) = ((𝑌 𝑋) 𝑍))
95, 6latjcl 17244 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) ∈ 𝐵)
1093adant3r1 1195 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑍) ∈ 𝐵)
115, 6latjcom 17252 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑌 𝑍) ∈ 𝐵) → (𝑋 (𝑌 𝑍)) = ((𝑌 𝑍) 𝑋))
121, 4, 10, 11syl3anc 1473 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = ((𝑌 𝑍) 𝑋))
135, 6latjcl 17244 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋) ∈ 𝐵)
141, 2, 4, 13syl3anc 1473 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌 𝑋) ∈ 𝐵)
155, 6latjcom 17252 . . 3 ((𝐾 ∈ Lat ∧ 𝑍𝐵 ∧ (𝑌 𝑋) ∈ 𝐵) → (𝑍 (𝑌 𝑋)) = ((𝑌 𝑋) 𝑍))
161, 3, 14, 15syl3anc 1473 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 (𝑌 𝑋)) = ((𝑌 𝑋) 𝑍))
178, 12, 163eqtr4d 2796 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 (𝑌 𝑍)) = (𝑍 (𝑌 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1624  wcel 2131  cfv 6041  (class class class)co 6805  Basecbs 16051  joincjn 17137  Latclat 17238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-preset 17121  df-poset 17139  df-lub 17167  df-glb 17168  df-join 17169  df-meet 17170  df-lat 17239
This theorem is referenced by:  3atlem1  35264  dalawlem3  35654  dalawlem6  35657  cdleme1  36009  cdleme11g  36047
  Copyright terms: Public domain W3C validator