![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latj13 | Structured version Visualization version GIF version |
Description: Swap 1st and 3rd members of lattice join. (Contributed by NM, 4-Jun-2012.) |
Ref | Expression |
---|---|
latjass.b | ⊢ 𝐵 = (Base‘𝐾) |
latjass.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latj13 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = (𝑍 ∨ (𝑌 ∨ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 474 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
2 | simpr2 1233 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
3 | simpr3 1235 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
4 | simpr1 1231 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
5 | latjass.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
6 | latjass.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
7 | 5, 6 | latj32 17290 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑌 ∨ 𝑍) ∨ 𝑋) = ((𝑌 ∨ 𝑋) ∨ 𝑍)) |
8 | 1, 2, 3, 4, 7 | syl13anc 1475 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 ∨ 𝑍) ∨ 𝑋) = ((𝑌 ∨ 𝑋) ∨ 𝑍)) |
9 | 5, 6 | latjcl 17244 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∨ 𝑍) ∈ 𝐵) |
10 | 9 | 3adant3r1 1195 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∨ 𝑍) ∈ 𝐵) |
11 | 5, 6 | latjcom 17252 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑌 ∨ 𝑍) ∈ 𝐵) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = ((𝑌 ∨ 𝑍) ∨ 𝑋)) |
12 | 1, 4, 10, 11 | syl3anc 1473 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = ((𝑌 ∨ 𝑍) ∨ 𝑋)) |
13 | 5, 6 | latjcl 17244 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑌 ∨ 𝑋) ∈ 𝐵) |
14 | 1, 2, 4, 13 | syl3anc 1473 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∨ 𝑋) ∈ 𝐵) |
15 | 5, 6 | latjcom 17252 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑍 ∈ 𝐵 ∧ (𝑌 ∨ 𝑋) ∈ 𝐵) → (𝑍 ∨ (𝑌 ∨ 𝑋)) = ((𝑌 ∨ 𝑋) ∨ 𝑍)) |
16 | 1, 3, 14, 15 | syl3anc 1473 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 ∨ (𝑌 ∨ 𝑋)) = ((𝑌 ∨ 𝑋) ∨ 𝑍)) |
17 | 8, 12, 16 | 3eqtr4d 2796 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ∨ (𝑌 ∨ 𝑍)) = (𝑍 ∨ (𝑌 ∨ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ‘cfv 6041 (class class class)co 6805 Basecbs 16051 joincjn 17137 Latclat 17238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-preset 17121 df-poset 17139 df-lub 17167 df-glb 17168 df-join 17169 df-meet 17170 df-lat 17239 |
This theorem is referenced by: 3atlem1 35264 dalawlem3 35654 dalawlem6 35657 cdleme1 36009 cdleme11g 36047 |
Copyright terms: Public domain | W3C validator |