Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfuhgr3 Structured version   Visualization version   GIF version

Theorem lfuhgr3 32366
Description: A hypergraph is loop-free if and only if none of its edges connect to only one vertex. (Contributed by BTernaryTau, 15-Oct-2023.)
Hypotheses
Ref Expression
lfuhgr3.1 𝑉 = (Vtx‘𝐺)
lfuhgr3.2 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfuhgr3 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺)))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐺,𝑎
Allowed substitution hints:   𝐼(𝑥,𝑎)   𝑉(𝑎)

Proof of Theorem lfuhgr3
StepHypRef Expression
1 lfuhgr3.1 . . 3 𝑉 = (Vtx‘𝐺)
2 lfuhgr3.2 . . 3 𝐼 = (iEdg‘𝐺)
31, 2lfuhgr2 32365 . 2 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1))
4 df-ne 3017 . . . . 5 ((♯‘𝑥) ≠ 1 ↔ ¬ (♯‘𝑥) = 1)
54ralbii 3165 . . . 4 (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ∀𝑥 ∈ (Edg‘𝐺) ¬ (♯‘𝑥) = 1)
6 ralnex 3236 . . . 4 (∀𝑥 ∈ (Edg‘𝐺) ¬ (♯‘𝑥) = 1 ↔ ¬ ∃𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 1)
7 df-rex 3144 . . . . 5 (∃𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 1 ↔ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1))
87notbii 322 . . . 4 (¬ ∃𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) = 1 ↔ ¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1))
95, 6, 83bitri 299 . . 3 (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1))
10 hashen1 13732 . . . . . . . 8 (𝑥 ∈ V → ((♯‘𝑥) = 1 ↔ 𝑥 ≈ 1o))
1110elv 3499 . . . . . . 7 ((♯‘𝑥) = 1 ↔ 𝑥 ≈ 1o)
12 en1 8576 . . . . . . 7 (𝑥 ≈ 1o ↔ ∃𝑎 𝑥 = {𝑎})
1311, 12bitri 277 . . . . . 6 ((♯‘𝑥) = 1 ↔ ∃𝑎 𝑥 = {𝑎})
1413anbi2i 624 . . . . 5 ((𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1) ↔ (𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
1514exbii 1848 . . . 4 (∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1) ↔ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
1615notbii 322 . . 3 (¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) = 1) ↔ ¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
17 19.3v 1986 . . . . . . . 8 (∀𝑎 𝑥 ∈ (Edg‘𝐺) ↔ 𝑥 ∈ (Edg‘𝐺))
18 19.29 1874 . . . . . . . 8 ((∀𝑎 𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → ∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
1917, 18sylanbr 584 . . . . . . 7 ((𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → ∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
20 eleq1 2900 . . . . . . . . 9 (𝑥 = {𝑎} → (𝑥 ∈ (Edg‘𝐺) ↔ {𝑎} ∈ (Edg‘𝐺)))
2120biimpac 481 . . . . . . . 8 ((𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → {𝑎} ∈ (Edg‘𝐺))
2221eximi 1835 . . . . . . 7 (∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → ∃𝑎{𝑎} ∈ (Edg‘𝐺))
2319, 22syl 17 . . . . . 6 ((𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → ∃𝑎{𝑎} ∈ (Edg‘𝐺))
2423exlimiv 1931 . . . . 5 (∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → ∃𝑎{𝑎} ∈ (Edg‘𝐺))
25 dfclel 2894 . . . . . . . 8 ({𝑎} ∈ (Edg‘𝐺) ↔ ∃𝑥(𝑥 = {𝑎} ∧ 𝑥 ∈ (Edg‘𝐺)))
26 pm3.22 462 . . . . . . . . 9 ((𝑥 = {𝑎} ∧ 𝑥 ∈ (Edg‘𝐺)) → (𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
2726eximi 1835 . . . . . . . 8 (∃𝑥(𝑥 = {𝑎} ∧ 𝑥 ∈ (Edg‘𝐺)) → ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
2825, 27sylbi 219 . . . . . . 7 ({𝑎} ∈ (Edg‘𝐺) → ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
2928eximi 1835 . . . . . 6 (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑎𝑥(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
30 excomim 2170 . . . . . 6 (∃𝑎𝑥(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → ∃𝑥𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}))
31 19.40 1887 . . . . . . . 8 (∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → (∃𝑎 𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
32 ax5e 1913 . . . . . . . . 9 (∃𝑎 𝑥 ∈ (Edg‘𝐺) → 𝑥 ∈ (Edg‘𝐺))
3332anim1i 616 . . . . . . . 8 ((∃𝑎 𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) → (𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
3431, 33syl 17 . . . . . . 7 (∃𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → (𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
3534eximi 1835 . . . . . 6 (∃𝑥𝑎(𝑥 ∈ (Edg‘𝐺) ∧ 𝑥 = {𝑎}) → ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
3629, 30, 353syl 18 . . . . 5 (∃𝑎{𝑎} ∈ (Edg‘𝐺) → ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}))
3724, 36impbii 211 . . . 4 (∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) ↔ ∃𝑎{𝑎} ∈ (Edg‘𝐺))
3837notbii 322 . . 3 (¬ ∃𝑥(𝑥 ∈ (Edg‘𝐺) ∧ ∃𝑎 𝑥 = {𝑎}) ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))
399, 16, 383bitri 299 . 2 (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))
403, 39syl6bb 289 1 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wex 1780  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  𝒫 cpw 4539  {csn 4567   class class class wbr 5066  dom cdm 5555  wf 6351  cfv 6355  1oc1o 8095  cen 8506  1c1 10538  cle 10676  2c2 11693  chash 13691  Vtxcvtx 26781  iEdgciedg 26782  Edgcedg 26832  UHGraphcuhgr 26841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692  df-edg 26833  df-uhgr 26843
This theorem is referenced by:  acycgrislfgr  32399
  Copyright terms: Public domain W3C validator