HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnmul Structured version   Visualization version   GIF version

Theorem lnfnmul 29825
Description: Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
lnfnmul ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))

Proof of Theorem lnfnmul
StepHypRef Expression
1 fveq1 6669 . . . . 5 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝑇‘(𝐴 · 𝐵)) = (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 · 𝐵)))
2 fveq1 6669 . . . . . 6 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝑇𝐵) = (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵))
32oveq2d 7172 . . . . 5 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (𝐴 · (𝑇𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵)))
41, 3eqeq12d 2837 . . . 4 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → ((𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)) ↔ (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 · 𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵))))
54imbi2d 343 . . 3 (𝑇 = if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) → (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵))) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 · 𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵)))))
6 0lnfn 29762 . . . . 5 ( ℋ × {0}) ∈ LinFn
76elimel 4534 . . . 4 if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0})) ∈ LinFn
87lnfnmuli 29821 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘(𝐴 · 𝐵)) = (𝐴 · (if(𝑇 ∈ LinFn, 𝑇, ( ℋ × {0}))‘𝐵)))
95, 8dedth 4523 . 2 (𝑇 ∈ LinFn → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵))))
1093impib 1112 1 ((𝑇 ∈ LinFn ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 · 𝐵)) = (𝐴 · (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  ifcif 4467  {csn 4567   × cxp 5553  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537   · cmul 10542  chba 28696   · csm 28698  LinFnclf 28731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-hilex 28776  ax-hfvadd 28777  ax-hv0cl 28780  ax-hvaddid 28781  ax-hfvmul 28782  ax-hvmulid 28783
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-sub 10872  df-lnfn 29625
This theorem is referenced by:  kbass4  29896
  Copyright terms: Public domain W3C validator