MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfincmp Structured version   Visualization version   GIF version

Theorem locfincmp 21252
Description: For a compact space, the locally finite covers are precisely the finite covers. Sadly, this property does not properly characterize all compact spaces. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
locfincmp.1 𝑋 = 𝐽
locfincmp.2 𝑌 = 𝐶
Assertion
Ref Expression
locfincmp (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)))

Proof of Theorem locfincmp
Dummy variables 𝑜 𝑐 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfincmp.1 . . . . . . . . . 10 𝑋 = 𝐽
21locfinnei 21249 . . . . . . . . 9 ((𝐶 ∈ (LocFin‘𝐽) ∧ 𝑥𝑋) → ∃𝑜𝐽 (𝑥𝑜 ∧ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
32ralrimiva 2961 . . . . . . . 8 (𝐶 ∈ (LocFin‘𝐽) → ∀𝑥𝑋𝑜𝐽 (𝑥𝑜 ∧ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
41cmpcov2 21116 . . . . . . . 8 ((𝐽 ∈ Comp ∧ ∀𝑥𝑋𝑜𝐽 (𝑥𝑜 ∧ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin)) → ∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
53, 4sylan2 491 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → ∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
6 elfpw 8220 . . . . . . . . 9 (𝑐 ∈ (𝒫 𝐽 ∩ Fin) ↔ (𝑐𝐽𝑐 ∈ Fin))
7 simplrr 800 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → 𝑐 ∈ Fin)
8 eldifsn 4292 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐶 ∖ {∅}) ↔ (𝑥𝐶𝑥 ≠ ∅))
9 simplrl 799 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑥𝐶)
10 simplrr 800 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑦𝑥)
11 simprr 795 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑦𝑜)
12 inelcm 4009 . . . . . . . . . . . . . . . . . . . 20 ((𝑦𝑥𝑦𝑜) → (𝑥𝑜) ≠ ∅)
1310, 11, 12syl2anc 692 . . . . . . . . . . . . . . . . . . 19 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → (𝑥𝑜) ≠ ∅)
14 ineq1 3790 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑥 → (𝑠𝑜) = (𝑥𝑜))
1514neeq1d 2849 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑥 → ((𝑠𝑜) ≠ ∅ ↔ (𝑥𝑜) ≠ ∅))
1615elrab 3350 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ↔ (𝑥𝐶 ∧ (𝑥𝑜) ≠ ∅))
179, 13, 16sylanbrc 697 . . . . . . . . . . . . . . . . . 18 ((((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) ∧ (𝑜𝑐𝑦𝑜)) → 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
18 elunii 4412 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝑥𝑥𝐶) → 𝑦 𝐶)
19 locfincmp.2 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑌 = 𝐶
2018, 19syl6eleqr 2709 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦𝑥𝑥𝐶) → 𝑦𝑌)
2120ancoms 469 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐶𝑦𝑥) → 𝑦𝑌)
2221adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑦𝑌)
231, 19locfinbas 21248 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐶 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌)
2423adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → 𝑋 = 𝑌)
2524ad3antrrr 765 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑋 = 𝑌)
2622, 25eleqtrrd 2701 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑦𝑋)
27 simplr 791 . . . . . . . . . . . . . . . . . . . 20 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑋 = 𝑐)
2826, 27eleqtrd 2700 . . . . . . . . . . . . . . . . . . 19 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → 𝑦 𝑐)
29 eluni2 4411 . . . . . . . . . . . . . . . . . . 19 (𝑦 𝑐 ↔ ∃𝑜𝑐 𝑦𝑜)
3028, 29sylib 208 . . . . . . . . . . . . . . . . . 18 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → ∃𝑜𝑐 𝑦𝑜)
3117, 30reximddv 3013 . . . . . . . . . . . . . . . . 17 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ (𝑥𝐶𝑦𝑥)) → ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
3231expr 642 . . . . . . . . . . . . . . . 16 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ 𝑥𝐶) → (𝑦𝑥 → ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
3332exlimdv 1858 . . . . . . . . . . . . . . 15 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ 𝑥𝐶) → (∃𝑦 𝑦𝑥 → ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
34 n0 3912 . . . . . . . . . . . . . . 15 (𝑥 ≠ ∅ ↔ ∃𝑦 𝑦𝑥)
35 eliun 4495 . . . . . . . . . . . . . . 15 (𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ↔ ∃𝑜𝑐 𝑥 ∈ {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
3633, 34, 353imtr4g 285 . . . . . . . . . . . . . 14 (((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) ∧ 𝑥𝐶) → (𝑥 ≠ ∅ → 𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
3736expimpd 628 . . . . . . . . . . . . 13 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → ((𝑥𝐶𝑥 ≠ ∅) → 𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
388, 37syl5bi 232 . . . . . . . . . . . 12 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → (𝑥 ∈ (𝐶 ∖ {∅}) → 𝑥 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}))
3938ssrdv 3593 . . . . . . . . . . 11 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → (𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅})
40 iunfi 8206 . . . . . . . . . . . . 13 ((𝑐 ∈ Fin ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin)
4140ex 450 . . . . . . . . . . . 12 (𝑐 ∈ Fin → (∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin))
42 ssfi 8132 . . . . . . . . . . . . 13 (( 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin ∧ (𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}) → (𝐶 ∖ {∅}) ∈ Fin)
4342expcom 451 . . . . . . . . . . . 12 ((𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} → ( 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈ Fin))
4441, 43sylan9 688 . . . . . . . . . . 11 ((𝑐 ∈ Fin ∧ (𝐶 ∖ {∅}) ⊆ 𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅}) → (∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈ Fin))
457, 39, 44syl2anc 692 . . . . . . . . . 10 ((((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) ∧ 𝑋 = 𝑐) → (∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin → (𝐶 ∖ {∅}) ∈ Fin))
4645expimpd 628 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ (𝑐𝐽𝑐 ∈ Fin)) → ((𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈ Fin))
476, 46sylan2b 492 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) ∧ 𝑐 ∈ (𝒫 𝐽 ∩ Fin)) → ((𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈ Fin))
4847rexlimdva 3025 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (∃𝑐 ∈ (𝒫 𝐽 ∩ Fin)(𝑋 = 𝑐 ∧ ∀𝑜𝑐 {𝑠𝐶 ∣ (𝑠𝑜) ≠ ∅} ∈ Fin) → (𝐶 ∖ {∅}) ∈ Fin))
495, 48mpd 15 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (𝐶 ∖ {∅}) ∈ Fin)
50 snfi 7990 . . . . . 6 {∅} ∈ Fin
51 unfi 8179 . . . . . 6 (((𝐶 ∖ {∅}) ∈ Fin ∧ {∅} ∈ Fin) → ((𝐶 ∖ {∅}) ∪ {∅}) ∈ Fin)
5249, 50, 51sylancl 693 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → ((𝐶 ∖ {∅}) ∪ {∅}) ∈ Fin)
53 ssun1 3759 . . . . . 6 𝐶 ⊆ (𝐶 ∪ {∅})
54 undif1 4020 . . . . . 6 ((𝐶 ∖ {∅}) ∪ {∅}) = (𝐶 ∪ {∅})
5553, 54sseqtr4i 3622 . . . . 5 𝐶 ⊆ ((𝐶 ∖ {∅}) ∪ {∅})
56 ssfi 8132 . . . . 5 ((((𝐶 ∖ {∅}) ∪ {∅}) ∈ Fin ∧ 𝐶 ⊆ ((𝐶 ∖ {∅}) ∪ {∅})) → 𝐶 ∈ Fin)
5752, 55, 56sylancl 693 . . . 4 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → 𝐶 ∈ Fin)
5857, 24jca 554 . . 3 ((𝐽 ∈ Comp ∧ 𝐶 ∈ (LocFin‘𝐽)) → (𝐶 ∈ Fin ∧ 𝑋 = 𝑌))
5958ex 450 . 2 (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) → (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)))
60 cmptop 21121 . . 3 (𝐽 ∈ Comp → 𝐽 ∈ Top)
611, 19finlocfin 21246 . . . 4 ((𝐽 ∈ Top ∧ 𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽))
62613expib 1265 . . 3 (𝐽 ∈ Top → ((𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽)))
6360, 62syl 17 . 2 (𝐽 ∈ Comp → ((𝐶 ∈ Fin ∧ 𝑋 = 𝑌) → 𝐶 ∈ (LocFin‘𝐽)))
6459, 63impbid 202 1 (𝐽 ∈ Comp → (𝐶 ∈ (LocFin‘𝐽) ↔ (𝐶 ∈ Fin ∧ 𝑋 = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  cdif 3556  cun 3557  cin 3558  wss 3559  c0 3896  𝒫 cpw 4135  {csn 4153   cuni 4407   ciun 4490  cfv 5852  Fincfn 7907  Topctop 20630  Compccmp 21112  LocFinclocfin 21230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-fin 7911  df-top 20631  df-cmp 21113  df-locfin 21233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator