![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmptop | Structured version Visualization version GIF version |
Description: A compact topology is a topology. (Contributed by Jeff Hankins, 29-Jun-2009.) |
Ref | Expression |
---|---|
cmptop | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | iscmp 21393 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑟 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑟 → ∃𝑠 ∈ (𝒫 𝑟 ∩ Fin)∪ 𝐽 = ∪ 𝑠))) |
3 | 2 | simplbi 478 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 ∩ cin 3714 𝒫 cpw 4302 ∪ cuni 4588 Fincfn 8121 Topctop 20900 Compccmp 21391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-in 3722 df-ss 3729 df-pw 4304 df-uni 4589 df-cmp 21392 |
This theorem is referenced by: imacmp 21402 cmpcld 21407 fiuncmp 21409 cmpfii 21414 bwth 21415 locfincmp 21531 kgeni 21542 kgentopon 21543 kgencmp 21550 kgencmp2 21551 cmpkgen 21556 txcmplem1 21646 txcmp 21648 qtopcmp 21713 cmphaushmeo 21805 ptcmpfi 21818 fclscmpi 22034 alexsubALTlem1 22052 ptcmplem1 22057 ptcmpg 22062 evth 22959 evth2 22960 cmppcmp 30234 ordcmp 32752 poimirlem30 33752 heibor1lem 33921 cmpfiiin 37762 kelac1 38135 kelac2 38137 stoweidlem28 40748 stoweidlem50 40770 stoweidlem53 40773 stoweidlem57 40777 stoweidlem62 40782 |
Copyright terms: Public domain | W3C validator |