Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrncoat Structured version   Visualization version   GIF version

Theorem ltrncoat 34251
Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel 34246, ltrnat 34247 uses. (Contributed by NM, 1-May-2013.)
Hypotheses
Ref Expression
ltrnel.l = (le‘𝐾)
ltrnel.a 𝐴 = (Atoms‘𝐾)
ltrnel.h 𝐻 = (LHyp‘𝐾)
ltrnel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrncoat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)

Proof of Theorem ltrncoat
StepHypRef Expression
1 simp1 1053 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp2l 1079 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → 𝐹𝑇)
3 ltrnel.l . . . 4 = (le‘𝐾)
4 ltrnel.a . . . 4 𝐴 = (Atoms‘𝐾)
5 ltrnel.h . . . 4 𝐻 = (LHyp‘𝐾)
6 ltrnel.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
73, 4, 5, 6ltrnat 34247 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
873adant2l 1311 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐺𝑃) ∈ 𝐴)
93, 4, 5, 6ltrnat 34247 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝐺𝑃) ∈ 𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
101, 2, 8, 9syl3anc 1317 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ 𝑃𝐴) → (𝐹‘(𝐺𝑃)) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  cfv 5790  lecple 15721  Atomscatm 33371  HLchlt 33458  LHypclh 34091  LTrncltrn 34208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-map 7723  df-plt 16727  df-glb 16744  df-p0 16808  df-oposet 33284  df-ol 33286  df-oml 33287  df-covers 33374  df-ats 33375  df-hlat 33459  df-lhyp 34095  df-laut 34096  df-ldil 34211  df-ltrn 34212
This theorem is referenced by:  cdlemg9a  34741  cdlemg9  34743  cdlemg11aq  34747  cdlemg12a  34752  cdlemg12c  34754  cdlemg12f  34757  cdlemg12g  34758  cdlemg12  34759  cdlemg13a  34760  cdlemg13  34761  cdlemg17f  34775  cdlemg17g  34776  cdlemg17  34786  cdlemg19a  34792  cdlemg19  34793
  Copyright terms: Public domain W3C validator