Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrnel Structured version   Visualization version   GIF version

Theorem ltrnel 35244
 Description: The lattice translation of an atom not under the fiducial co-atom is also an atom not under the fiducial co-atom. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 22-May-2012.)
Hypotheses
Ref Expression
ltrnel.l = (le‘𝐾)
ltrnel.a 𝐴 = (Atoms‘𝐾)
ltrnel.h 𝐻 = (LHyp‘𝐾)
ltrnel.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
ltrnel (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))

Proof of Theorem ltrnel
StepHypRef Expression
1 simp3l 1087 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃𝐴)
2 eqid 2620 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
3 ltrnel.a . . . . . 6 𝐴 = (Atoms‘𝐾)
42, 3atbase 34395 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
54adantr 481 . . . 4 ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) → 𝑃 ∈ (Base‘𝐾))
6 ltrnel.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 ltrnel.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
82, 3, 6, 7ltrnatb 35242 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝑃 ∈ (Base‘𝐾)) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
95, 8syl3an3 1359 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃𝐴 ↔ (𝐹𝑃) ∈ 𝐴))
101, 9mpbid 222 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) ∈ 𝐴)
11 simp3r 1088 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ 𝑃 𝑊)
12 simp1 1059 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 simp2 1060 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
141, 4syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑃 ∈ (Base‘𝐾))
15 simp1r 1084 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊𝐻)
162, 6lhpbase 35103 . . . . . 6 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
1715, 16syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 ∈ (Base‘𝐾))
18 ltrnel.l . . . . . 6 = (le‘𝐾)
192, 18, 6, 7ltrnle 35234 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (𝑃 𝑊 ↔ (𝐹𝑃) (𝐹𝑊)))
2012, 13, 14, 17, 19syl112anc 1328 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊 ↔ (𝐹𝑃) (𝐹𝑊)))
21 simp1l 1083 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ HL)
22 hllat 34469 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2321, 22syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐾 ∈ Lat)
242, 18latref 17034 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑊 ∈ (Base‘𝐾)) → 𝑊 𝑊)
2523, 17, 24syl2anc 692 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝑊 𝑊)
262, 18, 6, 7ltrnval1 35239 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑊 ∈ (Base‘𝐾) ∧ 𝑊 𝑊)) → (𝐹𝑊) = 𝑊)
2712, 13, 17, 25, 26syl112anc 1328 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑊) = 𝑊)
2827breq2d 4656 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) (𝐹𝑊) ↔ (𝐹𝑃) 𝑊))
2920, 28bitrd 268 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊 ↔ (𝐹𝑃) 𝑊))
3011, 29mtbid 314 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ¬ (𝐹𝑃) 𝑊)
3110, 30jca 554 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1481   ∈ wcel 1988   class class class wbr 4644  ‘cfv 5876  Basecbs 15838  lecple 15929  Latclat 17026  Atomscatm 34369  HLchlt 34456  LHypclh 35089  LTrncltrn 35206 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-map 7844  df-preset 16909  df-poset 16927  df-plt 16939  df-glb 16956  df-p0 17020  df-lat 17027  df-oposet 34282  df-ol 34284  df-oml 34285  df-covers 34372  df-ats 34373  df-atl 34404  df-cvlat 34428  df-hlat 34457  df-lhyp 35093  df-laut 35094  df-ldil 35209  df-ltrn 35210 This theorem is referenced by:  ltrncoelN  35248  ltrnmw  35256  trlcnv  35271  trljat2  35273  cdlemc3  35299  cdlemc5  35301  cdlemd9  35312  cdlemeiota  35692  cdlemg1cex  35695  cdlemg2l  35710  cdlemg2m  35711  cdlemg7fvbwN  35714  cdlemg4a  35715  cdlemg4b1  35716  cdlemg4b2  35717  cdlemg4d  35720  cdlemg4e  35721  cdlemg4  35724  cdlemg6e  35729  cdlemg7fvN  35731  cdlemg8b  35735  cdlemg8c  35736  cdlemg10bALTN  35743  cdlemg10a  35747  cdlemg12d  35753  cdlemg13a  35758  cdlemg13  35759  cdlemg14f  35760  cdlemg17b  35769  cdlemg17f  35773  cdlemg17i  35776  trlcoabs  35828  trlcoabs2N  35829  trlcolem  35833  cdlemg43  35837  cdlemg44b  35839  cdlemi2  35926  cdlemi  35927  cdlemk2  35939  cdlemk3  35940  cdlemk4  35941  cdlemk8  35945  cdlemk9  35946  cdlemk9bN  35947  cdlemki  35948  cdlemksv2  35954  cdlemk12  35957  cdlemkoatnle  35958  cdlemk12u  35979  cdlemkfid1N  36028  cdlemk47  36056  dia2dimlem1  36172  dia2dimlem2  36173  dia2dimlem3  36174  dia2dimlem6  36177  cdlemm10N  36226  dih1dimatlem0  36436  dih1dimatlem  36437
 Copyright terms: Public domain W3C validator