MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubcl Structured version   Visualization version   GIF version

Theorem lubcl 17595
Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubcl.b 𝐵 = (Base‘𝐾)
lubcl.u 𝑈 = (lub‘𝐾)
lubcl.k (𝜑𝐾𝑉)
lubcl.s (𝜑𝑆 ∈ dom 𝑈)
Assertion
Ref Expression
lubcl (𝜑 → (𝑈𝑆) ∈ 𝐵)

Proof of Theorem lubcl
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubcl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2821 . . 3 (le‘𝐾) = (le‘𝐾)
3 lubcl.u . . 3 𝑈 = (lub‘𝐾)
4 biid 263 . . 3 ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 lubcl.k . . 3 (𝜑𝐾𝑉)
6 lubcl.s . . . 4 (𝜑𝑆 ∈ dom 𝑈)
71, 2, 3, 5, 6lubelss 17592 . . 3 (𝜑𝑆𝐵)
81, 2, 3, 4, 5, 7lubval 17594 . 2 (𝜑 → (𝑈𝑆) = (𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
91, 2, 3, 4, 5, 6lubeu 17593 . . 3 (𝜑 → ∃!𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
10 riotacl 7131 . . 3 (∃!𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) → (𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) ∈ 𝐵)
119, 10syl 17 . 2 (𝜑 → (𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) ∈ 𝐵)
128, 11eqeltrd 2913 1 (𝜑 → (𝑈𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  ∃!wreu 3140   class class class wbr 5066  dom cdm 5555  cfv 6355  crio 7113  Basecbs 16483  lecple 16572  lubclub 17552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-lub 17584
This theorem is referenced by:  lubprop  17596  joincl  17616  clatlem  17721  op1cl  36336
  Copyright terms: Public domain W3C validator