MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lubcl Structured version   Visualization version   GIF version

Theorem lubcl 16925
Description: The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.)
Hypotheses
Ref Expression
lubcl.b 𝐵 = (Base‘𝐾)
lubcl.u 𝑈 = (lub‘𝐾)
lubcl.k (𝜑𝐾𝑉)
lubcl.s (𝜑𝑆 ∈ dom 𝑈)
Assertion
Ref Expression
lubcl (𝜑 → (𝑈𝑆) ∈ 𝐵)

Proof of Theorem lubcl
Dummy variables 𝑥 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubcl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2621 . . 3 (le‘𝐾) = (le‘𝐾)
3 lubcl.u . . 3 𝑈 = (lub‘𝐾)
4 biid 251 . . 3 ((∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
5 lubcl.k . . 3 (𝜑𝐾𝑉)
6 lubcl.s . . . 4 (𝜑𝑆 ∈ dom 𝑈)
71, 2, 3, 5, 6lubelss 16922 . . 3 (𝜑𝑆𝐵)
81, 2, 3, 4, 5, 7lubval 16924 . 2 (𝜑 → (𝑈𝑆) = (𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))))
91, 2, 3, 4, 5, 6lubeu 16923 . . 3 (𝜑 → ∃!𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
10 riotacl 6590 . . 3 (∃!𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) → (𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) ∈ 𝐵)
119, 10syl 17 . 2 (𝜑 → (𝑥𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧))) ∈ 𝐵)
128, 11eqeltrd 2698 1 (𝜑 → (𝑈𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2908  ∃!wreu 2910   class class class wbr 4623  dom cdm 5084  cfv 5857  crio 6575  Basecbs 15800  lecple 15888  lubclub 16882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-lub 16914
This theorem is referenced by:  lubprop  16926  joincl  16946  clatlem  17051  op1cl  33991
  Copyright terms: Public domain W3C validator