![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotacl | Structured version Visualization version GIF version |
Description: Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
Ref | Expression |
---|---|
riotacl | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3720 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
2 | riotacl2 6664 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | |
3 | 1, 2 | sseldi 3634 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ∃!wreu 2943 {crab 2945 ℩crio 6650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-un 3612 df-in 3614 df-ss 3621 df-sn 4211 df-pr 4213 df-uni 4469 df-iota 5889 df-riota 6651 |
This theorem is referenced by: riotaeqimp 6674 riotaprop 6675 riotass2 6678 riotass 6679 riotaxfrd 6682 riotaclb 6689 supcl 8405 fisupcl 8416 htalem 8797 dfac8clem 8893 dfac2a 8990 fin23lem22 9187 zorn2lem1 9356 subcl 10318 divcl 10729 lbcl 11012 flcl 12636 cjf 13888 sqrtcl 14145 qnumdencl 15494 qnumdenbi 15499 catidcl 16390 lubcl 17032 glbcl 17045 ismgmid 17311 grpinvf 17513 pj1f 18156 mirf 25600 midf 25713 ismidb 25715 lmif 25722 islmib 25724 uspgredg2vlem 26160 usgredg2vlem1 26162 frgrncvvdeqlem4 27282 grpoidcl 27496 grpoinvcl 27506 pjpreeq 28385 cnlnadjlem3 29056 adjbdln 29070 xdivcld 29759 cvmlift3lem3 31429 nosupno 31974 nosupbday 31976 nosupbnd1 31985 scutcut 32037 transportcl 32265 finxpreclem4 33361 poimirlem26 33565 iorlid 33787 riotaclbgBAD 34558 lshpkrlem2 34716 lshpkrcl 34721 cdleme25cl 35962 cdleme29cl 35982 cdlemefrs29clN 36004 cdlemk29-3 36516 cdlemkid5 36540 dihlsscpre 36840 mapdhcl 37333 hdmapcl 37439 hgmapcl 37498 wessf1ornlem 39685 fourierdlem50 40691 |
Copyright terms: Public domain | W3C validator |