MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmvlin Structured version   Visualization version   GIF version

Theorem mhmvlin 21008
Description: Tuple extension of monoid homomorphisms. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mhmvlin.b 𝐵 = (Base‘𝑀)
mhmvlin.p + = (+g𝑀)
mhmvlin.q = (+g𝑁)
Assertion
Ref Expression
mhmvlin ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹 ∘ (𝑋f + 𝑌)) = ((𝐹𝑋) ∘f (𝐹𝑌)))

Proof of Theorem mhmvlin
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1187 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → 𝐹 ∈ (𝑀 MndHom 𝑁))
2 elmapi 8428 . . . . . 6 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
323ad2ant2 1130 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
43ffvelrnda 6851 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝑋𝑦) ∈ 𝐵)
5 elmapi 8428 . . . . . 6 (𝑌 ∈ (𝐵m 𝐼) → 𝑌:𝐼𝐵)
653ad2ant3 1131 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑌:𝐼𝐵)
76ffvelrnda 6851 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝑌𝑦) ∈ 𝐵)
8 mhmvlin.b . . . . 5 𝐵 = (Base‘𝑀)
9 mhmvlin.p . . . . 5 + = (+g𝑀)
10 mhmvlin.q . . . . 5 = (+g𝑁)
118, 9, 10mhmlin 17963 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ (𝑋𝑦) ∈ 𝐵 ∧ (𝑌𝑦) ∈ 𝐵) → (𝐹‘((𝑋𝑦) + (𝑌𝑦))) = ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦))))
121, 4, 7, 11syl3anc 1367 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝐹‘((𝑋𝑦) + (𝑌𝑦))) = ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦))))
1312mpteq2dva 5161 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑦𝐼 ↦ (𝐹‘((𝑋𝑦) + (𝑌𝑦)))) = (𝑦𝐼 ↦ ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦)))))
14 mhmrcl1 17959 . . . . . 6 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝑀 ∈ Mnd)
1514adantr 483 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑦𝐼) → 𝑀 ∈ Mnd)
16153ad2antl1 1181 . . . 4 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → 𝑀 ∈ Mnd)
178, 9mndcl 17919 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑋𝑦) ∈ 𝐵 ∧ (𝑌𝑦) ∈ 𝐵) → ((𝑋𝑦) + (𝑌𝑦)) ∈ 𝐵)
1816, 4, 7, 17syl3anc 1367 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → ((𝑋𝑦) + (𝑌𝑦)) ∈ 𝐵)
19 elmapex 8427 . . . . . 6 (𝑌 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
2019simprd 498 . . . . 5 (𝑌 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
21203ad2ant3 1131 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
223feqmptd 6733 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑋 = (𝑦𝐼 ↦ (𝑋𝑦)))
236feqmptd 6733 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝑌 = (𝑦𝐼 ↦ (𝑌𝑦)))
2421, 4, 7, 22, 23offval2 7426 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝑋f + 𝑌) = (𝑦𝐼 ↦ ((𝑋𝑦) + (𝑌𝑦))))
25 eqid 2821 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
268, 25mhmf 17961 . . . . 5 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:𝐵⟶(Base‘𝑁))
27263ad2ant1 1129 . . . 4 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐹:𝐵⟶(Base‘𝑁))
2827feqmptd 6733 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → 𝐹 = (𝑧𝐵 ↦ (𝐹𝑧)))
29 fveq2 6670 . . 3 (𝑧 = ((𝑋𝑦) + (𝑌𝑦)) → (𝐹𝑧) = (𝐹‘((𝑋𝑦) + (𝑌𝑦))))
3018, 24, 28, 29fmptco 6891 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹 ∘ (𝑋f + 𝑌)) = (𝑦𝐼 ↦ (𝐹‘((𝑋𝑦) + (𝑌𝑦)))))
31 fvexd 6685 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝐹‘(𝑋𝑦)) ∈ V)
32 fvexd 6685 . . 3 (((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) ∧ 𝑦𝐼) → (𝐹‘(𝑌𝑦)) ∈ V)
33 fcompt 6895 . . . 4 ((𝐹:𝐵⟶(Base‘𝑁) ∧ 𝑋:𝐼𝐵) → (𝐹𝑋) = (𝑦𝐼 ↦ (𝐹‘(𝑋𝑦))))
3427, 3, 33syl2anc 586 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹𝑋) = (𝑦𝐼 ↦ (𝐹‘(𝑋𝑦))))
35 fcompt 6895 . . . 4 ((𝐹:𝐵⟶(Base‘𝑁) ∧ 𝑌:𝐼𝐵) → (𝐹𝑌) = (𝑦𝐼 ↦ (𝐹‘(𝑌𝑦))))
3627, 6, 35syl2anc 586 . . 3 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹𝑌) = (𝑦𝐼 ↦ (𝐹‘(𝑌𝑦))))
3721, 31, 32, 34, 36offval2 7426 . 2 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → ((𝐹𝑋) ∘f (𝐹𝑌)) = (𝑦𝐼 ↦ ((𝐹‘(𝑋𝑦)) (𝐹‘(𝑌𝑦)))))
3813, 30, 373eqtr4d 2866 1 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼)) → (𝐹 ∘ (𝑋f + 𝑌)) = ((𝐹𝑋) ∘f (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  cmpt 5146  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  m cmap 8406  Basecbs 16483  +gcplusg 16565  Mndcmnd 17911   MndHom cmhm 17954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-1st 7689  df-2nd 7690  df-map 8408  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956
This theorem is referenced by:  mendring  39812
  Copyright terms: Public domain W3C validator