 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnval Structured version   Visualization version   GIF version

Theorem mopnval 21959
 Description: An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object (MetOpen‘𝐷) is the family of all open sets in the metric space determined by the metric 𝐷. By mopntop 21961, the open sets of a metric space form a topology 𝐽, whose base set is ∪ 𝐽 by mopnuni 21962. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopnval (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))

Proof of Theorem mopnval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fvssunirn 6010 . . 3 (∞Met‘𝑋) ⊆ ran ∞Met
21sseli 3468 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ran ∞Met)
3 mopnval.1 . . 3 𝐽 = (MetOpen‘𝐷)
4 fveq2 5986 . . . . . 6 (𝑑 = 𝐷 → (ball‘𝑑) = (ball‘𝐷))
54rneqd 5165 . . . . 5 (𝑑 = 𝐷 → ran (ball‘𝑑) = ran (ball‘𝐷))
65fveq2d 5990 . . . 4 (𝑑 = 𝐷 → (topGen‘ran (ball‘𝑑)) = (topGen‘ran (ball‘𝐷)))
7 df-mopn 19471 . . . 4 MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
8 fvex 5996 . . . 4 (topGen‘ran (ball‘𝐷)) ∈ V
96, 7, 8fvmpt 6074 . . 3 (𝐷 ran ∞Met → (MetOpen‘𝐷) = (topGen‘ran (ball‘𝐷)))
103, 9syl5eq 2560 . 2 (𝐷 ran ∞Met → 𝐽 = (topGen‘ran (ball‘𝐷)))
112, 10syl 17 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1474   ∈ wcel 1938  ∪ cuni 4270  ran crn 4933  ‘cfv 5689  topGenctg 15809  ∞Metcxmt 19460  ballcbl 19462  MetOpencmopn 19465 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732 This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-sbc 3307  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-iota 5653  df-fun 5691  df-fv 5697  df-mopn 19471 This theorem is referenced by:  mopntopon  21960  elmopn  21963  imasf1oxms  22010  blssopn  22016  metss  22029  prdsxmslem2  22050  metcnp3  22061  xmetutop  22089  tgioo  22320  ismtyhmeolem  32639
 Copyright terms: Public domain W3C validator