MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetresbl Structured version   Visualization version   GIF version

Theorem xmetresbl 23042
Description: An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec 23039, this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +∞ from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
Hypothesis
Ref Expression
xmetresbl.1 𝐵 = (𝑃(ball‘𝐷)𝑅)
Assertion
Ref Expression
xmetresbl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵))

Proof of Theorem xmetresbl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1131 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐷 ∈ (∞Met‘𝑋))
2 xmetresbl.1 . . . 4 𝐵 = (𝑃(ball‘𝐷)𝑅)
3 blssm 23023 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
42, 3eqsstrid 4008 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐵𝑋)
5 xmetres2 22966 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
61, 4, 5syl2anc 586 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
7 xmetf 22934 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
81, 7syl 17 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
9 xpss12 5563 . . . . . 6 ((𝐵𝑋𝐵𝑋) → (𝐵 × 𝐵) ⊆ (𝑋 × 𝑋))
104, 4, 9syl2anc 586 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐵 × 𝐵) ⊆ (𝑋 × 𝑋))
118, 10fssresd 6538 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ*)
1211ffnd 6508 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵))
13 ovres 7307 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) = (𝑥𝐷𝑦))
1413adantl 484 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) = (𝑥𝐷𝑦))
15 simpl1 1186 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝐷 ∈ (∞Met‘𝑋))
16 eqid 2820 . . . . . . . . . 10 (𝐷 “ ℝ) = (𝐷 “ ℝ)
1716xmeter 23038 . . . . . . . . 9 (𝐷 ∈ (∞Met‘𝑋) → (𝐷 “ ℝ) Er 𝑋)
1815, 17syl 17 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝐷 “ ℝ) Er 𝑋)
1916blssec 23040 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ [𝑃](𝐷 “ ℝ))
202, 19eqsstrid 4008 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → 𝐵 ⊆ [𝑃](𝐷 “ ℝ))
2120sselda 3960 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑥𝐵) → 𝑥 ∈ [𝑃](𝐷 “ ℝ))
2221adantrr 715 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ [𝑃](𝐷 “ ℝ))
23 simpl2 1187 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃𝑋)
24 elecg 8325 . . . . . . . . . 10 ((𝑥 ∈ [𝑃](𝐷 “ ℝ) ∧ 𝑃𝑋) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
2522, 23, 24syl2anc 586 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑥))
2622, 25mpbid 234 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃(𝐷 “ ℝ)𝑥)
2720sselda 3960 . . . . . . . . . 10 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝑦𝐵) → 𝑦 ∈ [𝑃](𝐷 “ ℝ))
2827adantrl 714 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ [𝑃](𝐷 “ ℝ))
29 elecg 8325 . . . . . . . . . 10 ((𝑦 ∈ [𝑃](𝐷 “ ℝ) ∧ 𝑃𝑋) → (𝑦 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑦))
3028, 23, 29syl2anc 586 . . . . . . . . 9 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑦 ∈ [𝑃](𝐷 “ ℝ) ↔ 𝑃(𝐷 “ ℝ)𝑦))
3128, 30mpbid 234 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑃(𝐷 “ ℝ)𝑦)
3218, 26, 31ertr3d 8300 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥(𝐷 “ ℝ)𝑦)
3316xmeterval 23037 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → (𝑥(𝐷 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
3415, 33syl 17 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝐷 “ ℝ)𝑦 ↔ (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)))
3532, 34mpbid 234 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝑋𝑦𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ))
3635simp3d 1139 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥𝐷𝑦) ∈ ℝ)
3714, 36eqeltrd 2912 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) ∈ ℝ)
3837ralrimivva 3190 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → ∀𝑥𝐵𝑦𝐵 (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) ∈ ℝ)
39 ffnov 7271 . . 3 ((𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ ↔ ((𝐷 ↾ (𝐵 × 𝐵)) Fn (𝐵 × 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(𝐷 ↾ (𝐵 × 𝐵))𝑦) ∈ ℝ))
4012, 38, 39sylanbrc 585 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ)
41 ismet2 22938 . 2 ((𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵) ↔ ((𝐷 ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵) ∧ (𝐷 ↾ (𝐵 × 𝐵)):(𝐵 × 𝐵)⟶ℝ))
426, 40, 41sylanbrc 585 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wcel 2113  wral 3137  wss 3929   class class class wbr 5059   × cxp 5546  ccnv 5547  cres 5550  cima 5551   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7149   Er wer 8279  [cec 8280  cr 10529  *cxr 10667  ∞Metcxmet 20525  Metcmet 20526  ballcbl 20527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683  df-er 8282  df-ec 8284  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-2 11694  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-psmet 20532  df-xmet 20533  df-met 20534  df-bl 20535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator