Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nocvxminlem Structured version   Visualization version   GIF version

Theorem nocvxminlem 30895
Description: Lemma for nocvxmin 30896. Given two birthday-minimal elements of a convex class of surreals, they are not comparable. (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
nocvxminlem ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴))) → ¬ 𝑋 <s 𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑦,𝑌,𝑧
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem nocvxminlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq1 4580 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑥 <s 𝑧𝑋 <s 𝑧))
21anbi1d 736 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑥 <s 𝑧𝑧 <s 𝑦) ↔ (𝑋 <s 𝑧𝑧 <s 𝑦)))
32imbi1d 329 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)))
43ralbidv 2968 . . . . . . . . . . 11 (𝑥 = 𝑋 → (∀𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)))
5 breq2 4581 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑧 <s 𝑦𝑧 <s 𝑌))
65anbi2d 735 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑋 <s 𝑧𝑧 <s 𝑦) ↔ (𝑋 <s 𝑧𝑧 <s 𝑌)))
76imbi1d 329 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴)))
87ralbidv 2968 . . . . . . . . . . 11 (𝑦 = 𝑌 → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴)))
94, 8rspc2v 3292 . . . . . . . . . 10 ((𝑋𝐴𝑌𝐴) → (∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) → ∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴)))
10 breq2 4581 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑋 <s 𝑧𝑋 <s 𝑤))
11 breq1 4580 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑧 <s 𝑌𝑤 <s 𝑌))
1210, 11anbi12d 742 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((𝑋 <s 𝑧𝑧 <s 𝑌) ↔ (𝑋 <s 𝑤𝑤 <s 𝑌)))
13 eleq1 2675 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
1412, 13imbi12d 332 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) ↔ ((𝑋 <s 𝑤𝑤 <s 𝑌) → 𝑤𝐴)))
1514rspcv 3277 . . . . . . . . . . . . 13 (𝑤 No → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → 𝑤𝐴)))
16 bdaydm 30883 . . . . . . . . . . . . . . . . . . . . . 22 dom bday = No
1716sseq2i 3592 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ dom bday 𝐴 No )
18 bdayfun 30881 . . . . . . . . . . . . . . . . . . . . . 22 Fun bday
19 funfvima2 6375 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun bday 𝐴 ⊆ dom bday ) → (𝑤𝐴 → ( bday 𝑤) ∈ ( bday 𝐴)))
2018, 19mpan 701 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ dom bday → (𝑤𝐴 → ( bday 𝑤) ∈ ( bday 𝐴)))
2117, 20sylbir 223 . . . . . . . . . . . . . . . . . . . 20 (𝐴 No → (𝑤𝐴 → ( bday 𝑤) ∈ ( bday 𝐴)))
2221imp 443 . . . . . . . . . . . . . . . . . . 19 ((𝐴 No 𝑤𝐴) → ( bday 𝑤) ∈ ( bday 𝐴))
23 intss1 4421 . . . . . . . . . . . . . . . . . . 19 (( bday 𝑤) ∈ ( bday 𝐴) → ( bday 𝐴) ⊆ ( bday 𝑤))
2422, 23syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑤𝐴) → ( bday 𝐴) ⊆ ( bday 𝑤))
25 imassrn 5383 . . . . . . . . . . . . . . . . . . . . 21 ( bday 𝐴) ⊆ ran bday
26 bdayrn 30882 . . . . . . . . . . . . . . . . . . . . 21 ran bday = On
2725, 26sseqtri 3599 . . . . . . . . . . . . . . . . . . . 20 ( bday 𝐴) ⊆ On
28 ne0i 3879 . . . . . . . . . . . . . . . . . . . . 21 (( bday 𝑤) ∈ ( bday 𝐴) → ( bday 𝐴) ≠ ∅)
2922, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 No 𝑤𝐴) → ( bday 𝐴) ≠ ∅)
30 oninton 6869 . . . . . . . . . . . . . . . . . . . 20 ((( bday 𝐴) ⊆ On ∧ ( bday 𝐴) ≠ ∅) → ( bday 𝐴) ∈ On)
3127, 29, 30sylancr 693 . . . . . . . . . . . . . . . . . . 19 ((𝐴 No 𝑤𝐴) → ( bday 𝐴) ∈ On)
32 bdayelon 30885 . . . . . . . . . . . . . . . . . . 19 ( bday 𝑤) ∈ On
33 ontri1 5660 . . . . . . . . . . . . . . . . . . 19 (( ( bday 𝐴) ∈ On ∧ ( bday 𝑤) ∈ On) → ( ( bday 𝐴) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
3431, 32, 33sylancl 692 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑤𝐴) → ( ( bday 𝐴) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
3524, 34mpbid 220 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝑤𝐴) → ¬ ( bday 𝑤) ∈ ( bday 𝐴))
3635ex 448 . . . . . . . . . . . . . . . 16 (𝐴 No → (𝑤𝐴 → ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
37 eleq2 2676 . . . . . . . . . . . . . . . . . 18 (( bday 𝑋) = ( bday 𝐴) → (( bday 𝑤) ∈ ( bday 𝑋) ↔ ( bday 𝑤) ∈ ( bday 𝐴)))
3837notbid 306 . . . . . . . . . . . . . . . . 17 (( bday 𝑋) = ( bday 𝐴) → (¬ ( bday 𝑤) ∈ ( bday 𝑋) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
3938biimprcd 238 . . . . . . . . . . . . . . . 16 (¬ ( bday 𝑤) ∈ ( bday 𝐴) → (( bday 𝑋) = ( bday 𝐴) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
4036, 39syl6 34 . . . . . . . . . . . . . . 15 (𝐴 No → (𝑤𝐴 → (( bday 𝑋) = ( bday 𝐴) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))
4140com3l 86 . . . . . . . . . . . . . 14 (𝑤𝐴 → (( bday 𝑋) = ( bday 𝐴) → (𝐴 No → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))
4241adantrd 482 . . . . . . . . . . . . 13 (𝑤𝐴 → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝐴 No → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))
4315, 42syl8 73 . . . . . . . . . . . 12 (𝑤 No → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝐴 No → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
4443com35 95 . . . . . . . . . . 11 (𝑤 No → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → (𝐴 No → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
4544com4l 89 . . . . . . . . . 10 (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → (𝐴 No → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
469, 45syl6 34 . . . . . . . . 9 ((𝑋𝐴𝑌𝐴) → (∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) → (𝐴 No → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))))))
4746com3l 86 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) → (𝐴 No → ((𝑋𝐴𝑌𝐴) → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))))))
4847impcom 444 . . . . . . 7 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ((𝑋𝐴𝑌𝐴) → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
4948imp42 617 . . . . . 6 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑤 No ) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
5049con2d 127 . . . . 5 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑤 No ) → (( bday 𝑤) ∈ ( bday 𝑋) → ¬ (𝑋 <s 𝑤𝑤 <s 𝑌)))
51 3anass 1034 . . . . . . 7 ((( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌) ↔ (( bday 𝑤) ∈ ( bday 𝑋) ∧ (𝑋 <s 𝑤𝑤 <s 𝑌)))
5251notbii 308 . . . . . 6 (¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌) ↔ ¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ (𝑋 <s 𝑤𝑤 <s 𝑌)))
53 imnan 436 . . . . . 6 ((( bday 𝑤) ∈ ( bday 𝑋) → ¬ (𝑋 <s 𝑤𝑤 <s 𝑌)) ↔ ¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ (𝑋 <s 𝑤𝑤 <s 𝑌)))
5452, 53bitr4i 265 . . . . 5 (¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌) ↔ (( bday 𝑤) ∈ ( bday 𝑋) → ¬ (𝑋 <s 𝑤𝑤 <s 𝑌)))
5550, 54sylibr 222 . . . 4 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑤 No ) → ¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
5655nrexdv 2983 . . 3 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ¬ ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
57 ssel 3561 . . . . . . . . 9 (𝐴 No → (𝑋𝐴𝑋 No ))
58 ssel 3561 . . . . . . . . 9 (𝐴 No → (𝑌𝐴𝑌 No ))
5957, 58anim12d 583 . . . . . . . 8 (𝐴 No → ((𝑋𝐴𝑌𝐴) → (𝑋 No 𝑌 No )))
6059imp 443 . . . . . . 7 ((𝐴 No ∧ (𝑋𝐴𝑌𝐴)) → (𝑋 No 𝑌 No ))
61 eqtr3 2630 . . . . . . 7 ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → ( bday 𝑋) = ( bday 𝑌))
6260, 61anim12i 587 . . . . . 6 (((𝐴 No ∧ (𝑋𝐴𝑌𝐴)) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴))) → ((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)))
6362anasss 676 . . . . 5 ((𝐴 No ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)))
6463adantlr 746 . . . 4 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)))
65 nodense 30894 . . . . 5 (((𝑋 No 𝑌 No ) ∧ (( bday 𝑋) = ( bday 𝑌) ∧ 𝑋 <s 𝑌)) → ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
6665anassrs 677 . . . 4 ((((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
6764, 66sylan 486 . . 3 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑋 <s 𝑌) → ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
6856, 67mtand 688 . 2 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ¬ 𝑋 <s 𝑌)
6968ex 448 1 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴))) → ¬ 𝑋 <s 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  wss 3539  c0 3873   cint 4404   class class class wbr 4577  dom cdm 5028  ran crn 5029  cima 5031  Oncon0 5626  Fun wfun 5784  cfv 5790   No csur 30843   <s cslt 30844   bday cbday 30845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-ord 5629  df-on 5630  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-1o 7424  df-2o 7425  df-no 30846  df-slt 30847  df-bday 30848
This theorem is referenced by:  nocvxmin  30896
  Copyright terms: Public domain W3C validator