![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvs | Structured version Visualization version GIF version |
Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvs.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvs.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvs.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
nvs | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvs.1 | . . . . . . 7 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | eqid 2752 | . . . . . . 7 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
3 | nvs.4 | . . . . . . 7 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
4 | eqid 2752 | . . . . . . 7 ⊢ (0vec‘𝑈) = (0vec‘𝑈) | |
5 | nvs.6 | . . . . . . 7 ⊢ 𝑁 = (normCV‘𝑈) | |
6 | 1, 2, 3, 4, 5 | nvi 27770 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (〈( +𝑣 ‘𝑈), 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
7 | 6 | simp3d 1138 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
8 | simp2 1131 | . . . . . 6 ⊢ ((((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) | |
9 | 8 | ralimi 3082 | . . . . 5 ⊢ (∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = (0vec‘𝑈)) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥( +𝑣 ‘𝑈)𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
10 | 7, 9 | syl 17 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
11 | oveq2 6813 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑦𝑆𝑥) = (𝑦𝑆𝐵)) | |
12 | 11 | fveq2d 6348 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑁‘(𝑦𝑆𝑥)) = (𝑁‘(𝑦𝑆𝐵))) |
13 | fveq2 6344 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → (𝑁‘𝑥) = (𝑁‘𝐵)) | |
14 | 13 | oveq2d 6821 | . . . . . 6 ⊢ (𝑥 = 𝐵 → ((abs‘𝑦) · (𝑁‘𝑥)) = ((abs‘𝑦) · (𝑁‘𝐵))) |
15 | 12, 14 | eqeq12d 2767 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ↔ (𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁‘𝐵)))) |
16 | oveq1 6812 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (𝑦𝑆𝐵) = (𝐴𝑆𝐵)) | |
17 | 16 | fveq2d 6348 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑁‘(𝑦𝑆𝐵)) = (𝑁‘(𝐴𝑆𝐵))) |
18 | fveq2 6344 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → (abs‘𝑦) = (abs‘𝐴)) | |
19 | 18 | oveq1d 6820 | . . . . . 6 ⊢ (𝑦 = 𝐴 → ((abs‘𝑦) · (𝑁‘𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
20 | 17, 19 | eqeq12d 2767 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑁‘(𝑦𝑆𝐵)) = ((abs‘𝑦) · (𝑁‘𝐵)) ↔ (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵)))) |
21 | 15, 20 | rspc2v 3453 | . . . 4 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵)))) |
22 | 10, 21 | syl5 34 | . . 3 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ) → (𝑈 ∈ NrmCVec → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵)))) |
23 | 22 | 3impia 1109 | . 2 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝑈 ∈ NrmCVec) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
24 | 23 | 3com13 1118 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝑆𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 ∀wral 3042 〈cop 4319 class class class wbr 4796 ⟶wf 6037 ‘cfv 6041 (class class class)co 6805 ℂcc 10118 ℝcr 10119 0cc0 10120 + caddc 10123 · cmul 10125 ≤ cle 10259 abscabs 14165 CVecOLDcvc 27714 NrmCVeccnv 27740 +𝑣 cpv 27741 BaseSetcba 27742 ·𝑠OLD cns 27743 0veccn0v 27744 normCVcnmcv 27746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-oprab 6809 df-1st 7325 df-2nd 7326 df-vc 27715 df-nv 27748 df-va 27751 df-ba 27752 df-sm 27753 df-0v 27754 df-nmcv 27756 |
This theorem is referenced by: nvsge0 27820 nvm1 27821 nvpi 27823 nvmtri 27827 smcnlem 27853 ipidsq 27866 minvecolem2 28032 |
Copyright terms: Public domain | W3C validator |