MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oawordri Structured version   Visualization version   GIF version

Theorem oawordri 8176
Description: Weak ordering property of ordinal addition. Proposition 8.7 of [TakeutiZaring] p. 59. (Contributed by NM, 7-Dec-2004.)
Assertion
Ref Expression
oawordri ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))

Proof of Theorem oawordri
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7164 . . . . 5 (𝑥 = ∅ → (𝐴 +o 𝑥) = (𝐴 +o ∅))
2 oveq2 7164 . . . . 5 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
31, 2sseq12d 4000 . . . 4 (𝑥 = ∅ → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o ∅) ⊆ (𝐵 +o ∅)))
4 oveq2 7164 . . . . 5 (𝑥 = 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o 𝑦))
5 oveq2 7164 . . . . 5 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
64, 5sseq12d 4000 . . . 4 (𝑥 = 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦)))
7 oveq2 7164 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +o 𝑥) = (𝐴 +o suc 𝑦))
8 oveq2 7164 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
97, 8sseq12d 4000 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
10 oveq2 7164 . . . . 5 (𝑥 = 𝐶 → (𝐴 +o 𝑥) = (𝐴 +o 𝐶))
11 oveq2 7164 . . . . 5 (𝑥 = 𝐶 → (𝐵 +o 𝑥) = (𝐵 +o 𝐶))
1210, 11sseq12d 4000 . . . 4 (𝑥 = 𝐶 → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
13 oa0 8141 . . . . . . 7 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
1413adantr 483 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o ∅) = 𝐴)
15 oa0 8141 . . . . . . 7 (𝐵 ∈ On → (𝐵 +o ∅) = 𝐵)
1615adantl 484 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +o ∅) = 𝐵)
1714, 16sseq12d 4000 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o ∅) ⊆ (𝐵 +o ∅) ↔ 𝐴𝐵))
1817biimpar 480 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 +o ∅) ⊆ (𝐵 +o ∅))
19 oacl 8160 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o 𝑦) ∈ On)
20 eloni 6201 . . . . . . . . . . 11 ((𝐴 +o 𝑦) ∈ On → Ord (𝐴 +o 𝑦))
2119, 20syl 17 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → Ord (𝐴 +o 𝑦))
22 oacl 8160 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o 𝑦) ∈ On)
23 eloni 6201 . . . . . . . . . . 11 ((𝐵 +o 𝑦) ∈ On → Ord (𝐵 +o 𝑦))
2422, 23syl 17 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → Ord (𝐵 +o 𝑦))
25 ordsucsssuc 7538 . . . . . . . . . 10 ((Ord (𝐴 +o 𝑦) ∧ Ord (𝐵 +o 𝑦)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
2621, 24, 25syl2an 597 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
2726anandirs 677 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
28 oasuc 8149 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
2928adantlr 713 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐴 +o suc 𝑦) = suc (𝐴 +o 𝑦))
30 oasuc 8149 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3130adantll 712 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
3229, 31sseq12d 4000 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦) ↔ suc (𝐴 +o 𝑦) ⊆ suc (𝐵 +o 𝑦)))
3327, 32bitr4d 284 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) ↔ (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
3433biimpd 231 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦)))
3534expcom 416 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))
3635adantrd 494 . . . 4 (𝑦 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → ((𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o suc 𝑦) ⊆ (𝐵 +o suc 𝑦))))
37 vex 3497 . . . . . . 7 𝑥 ∈ V
38 ss2iun 4937 . . . . . . . 8 (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → 𝑦𝑥 (𝐴 +o 𝑦) ⊆ 𝑦𝑥 (𝐵 +o 𝑦))
39 oalim 8157 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
4039adantlr 713 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐴 +o 𝑥) = 𝑦𝑥 (𝐴 +o 𝑦))
41 oalim 8157 . . . . . . . . . 10 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
4241adantll 712 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝐵 +o 𝑥) = 𝑦𝑥 (𝐵 +o 𝑦))
4340, 42sseq12d 4000 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥) ↔ 𝑦𝑥 (𝐴 +o 𝑦) ⊆ 𝑦𝑥 (𝐵 +o 𝑦)))
4438, 43syl5ibr 248 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)))
4537, 44mpanr1 701 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥)))
4645expcom 416 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))))
4746adantrd 494 . . . 4 (Lim 𝑥 → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (∀𝑦𝑥 (𝐴 +o 𝑦) ⊆ (𝐵 +o 𝑦) → (𝐴 +o 𝑥) ⊆ (𝐵 +o 𝑥))))
483, 6, 9, 12, 18, 36, 47tfinds3 7579 . . 3 (𝐶 ∈ On → (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
4948exp4c 435 . 2 (𝐶 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))))
50493imp231 1109 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +o 𝐶) ⊆ (𝐵 +o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  wss 3936  c0 4291   ciun 4919  Ord word 6190  Oncon0 6191  Lim wlim 6192  suc csuc 6193  (class class class)co 7156   +o coa 8099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-oadd 8106
This theorem is referenced by:  oaword2  8179  omwordri  8198  oaabs2  8272
  Copyright terms: Public domain W3C validator